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Abstract 

We propose a modified nonmonotone line search technique which 

includes a convex combination of the maximum objective function value 

of the preceding successful iterates and the current objective function 

value. Our algorithm is proved to be well-defined and effective through 

theoretical analysis and numerical experiments. Compared to other 

nonmonotone methods, our algorithm makes full use of functional 
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information and is easier to practice. Its numerical results show that this 

algorithm is efficient. 

1. Introduction 

We consider the following unconstrained optimization problem 

 ( ) ,,min nRxxf ∈  (1) 

where RRf n →:  is a continuously differentiable function, nR  is a Euclidean 

space. This problem, arising often in economy, management, control science and 

many fields in society, is extremely important. There are various methods to attack 

problem (1). Almost all the methods for problem (1) are the iterative ones and they 

generate a sequence { }kx  converging to the desired solution. The iteration has the 

form 

,1 kkkk dxx α+=+  

where kd  is the current direction and 0>αk  is a step length to reduce the objective 

function ( ).xf  

Among all the effective methods, conjugate gradient methods [1] and memory 

gradient methods [2] are two powerful methods for solving large scale unconstrained 

optimization problems, because they avoid the computation and storage of some 

matrices associated with Newton type methods. Many authors presented the different 

kinds of formulas to calculate the search direction kd  in conjugate gradient methods, 

such as Fletcher-Reeves (FR), Polark-Ribire-Polyak (PRP), Polark-Ribire-Polyak 

plus ( )+PRP  and Dai-Yuan (DY), etc. Moreover, the global convergence properties 

of conjugate gradient methods have been studied by many researchers [3-5]. But 

different from the conjugate gradient appraoches, there are no uniform formula of 

kd  for memory gradient methods which was proposed by Miele and Cantrell [2] and 

Cragg and Levy [6]. Moreover, memory gradient methods sufficiently use the 

previous multi-step iterative information at every iteration and add the freedom of 

some parameters to guarantee quick convergent and robust. Many authors have 
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studied the memory gradient method [1, 12-14] and their global convergence 

properties for these methods and yielded substantial results [7-11]. 

Motivated by the above idea, in this paper, we proposed a modified 

nonmonotone memory gradient method, different from those above, we replace the 

Armijo monotone line search by our modified nonmonotone line search technique. 

The stepsize determined by Armijo monotone line search may considerably slow the 

rate of convergence in the presence of the narrow curved valley. But nonmonotone 

line search may solve this drawback in a certain degree. Based on the previous 

reference [16], we present a modified nonmonotone memory gradient method via 

combining nonmonotone line search by Yu and Pu [15] with monotone Armijo line 

search so that the best convergence result can be obtained in case that kα  is chosen 

by nonmonotone when the iterates were far from the optimum, and kα  is chosen by 

monotone when the iterates were near an optimum. Our method performs efficiently 

both in theory and numerical results. The search direction that generated by the new 

method automatically satisfies sufficient descent condition at every iteration without 

requiring conditions. Furthermore, we prove that the new method with nonmonotone 

line search rule is globally convergent under mild conditions. Numerical experiments 

show that the proposed method is efficient. 

This paper is organized as follows. In Section 2, we introduce a modified 

nonmonotone line search which includes a convex combination of the maximum 

function value of some preceding successful iterates and the current function value, 

then the new algorithm follows. In Section 3, we establish the global convergence of 

the algorithms. Some numerical experiments are given in Section 4. 

2. A Modified Nonmonotone Memory Gradient Method 

In monotonic method, the step size kα  along the search direction kd  is 

determined by 

( ) ( ).min
0

kkkkk dxfdxf α+=α+
>α

 

In fact, the exact step size is difficult or even impossible to seek in practical 

computation, and thus many researchers constructed some inexact line search rule, 
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such as Armijo rule, Goldstein rule, Wolfe rule and nonmontone line search [17]. 

Chamberlain et al. [18] proposed a watchdog technique for constrained 

optimization in 1982, in which some standard line search conditions were relaxed to 

overcome the Marotos effect. Motivated by this idea, Grippo et al. [17] presented a 

nonmonotone Armijo-type line search technique for the Newton method. The 

traditional line search rules require the function value descent monotonically at each 

iteration. It may considerably slow the rate of convergence in the intermediate stages 

of the minimization process, especially in the presence of the narrow curved valley. 

However, the nonmonotone line search rules are effective or even powerful at some 

iteration, especially when the iterates are trapped in a narrow curved valley of 

objective functions. 

The earliest nonmonotone line search framework was developed by Grippo et al. 

[17] for Newton-type methods. Due to its excellent numerical exhibition, many 

nonmonotone techniques have been developed in recent years, before introducing the 

new nonmonotone technique, we describe the nonmonotone Armijo rule first. Let 

kα  be a stepsize with 0≥αk  and kd  be the search direction satisfied ,0≤k
T
k dg  

given ( ) ( )1,0,1,0,0 ∈β∈γ>a  and M be a nonnegative integer. For each k, let 

( )km  satisfies 

( ) ( ) ( )[ ],,11min0,00 Mkmkmm +−≤≤=    for .1≥k  

Let a
k

p
k β=α  and kp  be the smallest nonnegative integer p such that 

( )
( )

[ ( )] .max
0

k
T
k

p
jk

kmj
kkk dagxfdxf

k

γβ+≤α+ −
≤≤

 

If the search is the nonmonotone Goldstein line search, then kα  should satisfy the 

following condition: 

( )
( )

[ ( )] ,max 1
0

k
T
kkjk

kmj
kkk dgxfdxf λµ+≤α+ −

≤≤
 

( )
( )

[ ( )] ,max 2
0

k
T
kkjk

kmj
kkk dgxfdxf λµ+≤α+ −

≤≥
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where .10 21 <µ≤µ<  

If the search is the nonmonotone Wolfe line search, then kα  should satisfy the 

following condition: 

( )
( )

[ ( )] ,max 1
0

k
T
kkjk

kmj
kkk dgxfdxf αγ+≤α+ −

≤≤
 

( ) ,2 k
T
kk

T
kkk dgddxg γ≥α+  

where .10 21 <γ≤γ<  

Since Grippo et al. [17] proposed a nonmonotone line search rule for Newton 

method, the nonmonotone line search methods have been studied by many authors, 

e.g., Toint [19], Dai [20], Zhang and Hager [16], Shi and Shen [21], Yu and Pu [15]. 

Theoretical analysis and numerical results show that the nonmonotone algorithms are 

very efficient. 

Although these nonmonotone techniques work well in many cases, there are 

some drawbacks. First, a good function value generated in any iteration is essentially 

discarded due to the maximum. Second, the numerical performance is very much 

dependent on the choice of M [17, 19, 22] in some cases. In this paper, we adopt the 

nonmonotone line search proposed by Yu and Pu [15] as follows 

( )
( )

,1,1,,2,1,0,

1

0
∑

−

=

=λ−=λ≥λ

km

r

krkr kmr ⋯  

where ( ] 1,1,0 ≥∈λ M  is a positive integer, ( ) [ ].,1min Mkkm +=  

Let kp
k β=α  be bounded above and satisfy: 

 ( ) ( ) ( )
( )

( ) .,,max

1

0

kkk

km

r

rkkrkkkk xgdxfxfdxf γα+













λ≤α+ ∑

−

=

−  (2) 

As well known, the best convergence results were obtained kα  is chosen by 

nonmonotone when the iterates were far from the optimum, and kα  is chosen by 
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monotone when the iterates were near an optimum. So we give a modified 

nonmonotone line search which is a convex combination of monotone line search and 

nonmonotone line search by Yu and Pu [15], when the value of µ  is closer to 1, the 

modified line search closely approximates the usual monotone line search, and as µ  

approaches 0, the scheme becomes more nonmonotone. The modified line search is 

as following: 

Let ( ],1,0∈λ  1≥M  is a positive integer, defined ( ) [ ]Mkkm ,1min +=  

( )
( )

.1,1,,2,1,0,

1

0
∑

−

=

=λ−=λ≥λ

km

r

krkr kmr ⋯  

Let kp
k β=α  be bounded above and satisfy: 

( ) ( ) ( ) ( ) ,,1 kkkkkkkk xgdTxfdxf γα+µ−+µ≤α+  

( )
( )

( ) .,max

1

0













λ= −

−

=
∑ rk

km

r

krkk xfxfT  

The following algorithm model is a modified nonmonotone memory gradient method 

in [14], here we replace the Armijo monotone line search by our modified 

nonmonotone line search technique. The direction kd  is determined by the following 

formula for solving problem (1): 

,1 kkkk dxx α+=+  







≥δβ+−

=−

=

− ,2,

,1,

1 kg

kg

d

kkk

k

k  (4) 

where 11 −− −=δ kkk gd  and the parameter kβ  is chosen from Tang and Dong [14] 

 








≠
δ

η

=

=β
−−

−

−−

.if

,if,0

11
1

11

kk
k

k

kk

k
gd

g

gd

 (5) 
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Algorithm 2.1. 

Step 0. Give ,1x  and .1,0,1,
2

1
,10,10 =>ε






∈η<γ<<β< k  

Step 1. Compute ,kg  if ,ε≤kg  stop. 

Step 2. Compute kd  by (4) and (5). 

Step 3. Let initial step .1=αk  

Step 4. Set .1 kkkk dxx α+=+  

Step 5. Let M be a nonnegative integer, [ ].1,0∈µ  For each k, let ( )km  satisfy 

( ) ( ) ( )[ ]Mkmkmm ,11min0,00 +−≤≤=  for ,1≥k  

0≥αk  is bounded above and satisfies 

 ( ) ( ) ( ) ( ) ,,1 kkkkkkkk xgdTxfdxf γα+µ−+µ≤α+  (6) 

( ) ( )
( )

.,max

1

0













λ= ∑

−

=

−

km

r

rkkrkk xfxfT  

If (6) does not hold, define βα=α kk  and go to Step 4. 

Step 6. Set ,1: += kk  and go to Step 1. 

Note that the algorithm is well-defined, in fact, when ( +=α kk xf,0  

) ( )kkk xfd =α  there must exist a sufficient small kα  such that 

( ) ( ) .kkkkkkk dxffdxf ∇γα+≤α+  

By ( ) 0≤∇ kk dxf  and ,10 <γ<  together with 

( ) ( ) ( ) ( ) ( )
( )

.,max1

1

0













λµ−+µ≤ ∑

−

=

−

km

r

rkkrkkk xfxfxfxf  
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Then we have 

( ) ( )kkkk xfdxf µ≤α+  

( ) ( ) ( )
( )

( ) .,max1

1

0

kkk

km

r

rkkrk dxfxfxf ∇γα+













λµ−+ ∑

−

=

−  

3. The Global Convergent Properties 

In this section, we discuss the global convergence property of algorithm with the 

modified nonmonotone line search. In order to achieve the convergence of Algorithm 

2.1, we give some Assumptions as follow: 

Assumption 3.1. 

A: ( )xf  is bounded above on the level set { ( ) ( )}.0xfxfxL ≤=  

B: In some neighborhood Ω  of fL,  is continuously differentiable, and its 

gradient ( )xf∇  is Lipschitz continuous, namely, there exists a constant L such that 

( ) ( ) .kk xxLxfxf −≤∇−∇  

Lemma 3.1. Suppose Assumption 3.1 holds, and kd  is computed by (4) and (5). 

We have ( ) ,1
2

kk
T
k gdg η−≥−  for any .1≥k  

Proof. If ,1=k  we have ,
2

kk
T
k gdg =−  the conclusion holds. 

If ,1>k  we have 

,1
1









η

η

η
+−−=− −

−
k

k

k
kkk

T
k

g
ggdg  

.
22

kkk
T
k ggdg η±=−  

The conclusion follows. 

Lemma 3.2. Suppose Assumption 3.1 holds, and kd  is computed by (4), (5). We 
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have ( ) ,1 kk gd η+≤  for any .1≥k  

Proof. If ,1=k  we have ,kk gd =  holds. 

If ,1>k  we have 

1
1

−
−

η
η

η
+−= k

k

k
kk

g
gd  

kkk ggd η±−=  

holds. 

Lemma 3.3. Suppose Assumption B holds, kα  satisfy formula (6) of Algorithm 

2.1, then there exists β  such that 

 
( )

.
,1

,1min
2 









 βγ−

≥α

k

kk
k

d

dg

L
 (7) 

Proof. At the kth iterate, if 1=αk  satisfies formula (6), then .1=αk  

Otherwise, there exists ,β  which does not satisfy formula (6) for ,0>βαk  in 

other words, it holds, 

( ) ( ) ( )kk
k

kkk
k

k xgdTxfdxf ,1
β

α
γ+µ−+µ>








β

α
+  

( ) ( ) ., kk
k

k xgdxf
β

α
γ+>  (8) 

By mean value theorems, we have: 

( ) ( ) ( ) ( ) ( )∫
β

α+−+=−α+
0

, kktkkkkkkk dxgddxgtdxgxfdxf  

( ) .,
2

1 22
kkk dxgdL α+α≤  

Together with (8), we have 
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( )
.

,1
,1min

2 









 βγ−

≥α

k

kk
k

d

dg

L
 

Therefore, the conclusion holds. 

Lemma 3.4. Suppose Assumption 3.1 holds, and the sequence kx  is generated 

by Algorithm 2.1, then we have 

( ) ( ) ( ) ( )∑
−

=

−−−γα+αλγ+≤

2

0

1110 ,,

k

r

kkkrrrk dxgdxgxfxf  

( ) ( ) .,

1

0

0 rr

k

r

r dxgxf ∑
−

=

αλγ+≤  (9) 

Proof. We prove the conclusion by induction. 

If ,1=k  by (6) and ,1≤λ  we have 

( ) ( ) ( ) ( ) ( ) .,, 000000001 dxgxfdxgxxf γλα+≤λα+≤  

Assume (9) holds for ,,,2,1 k⋯  we can consider by the following two cases: 

Case 1. ( ) ( ) ( ),,max

1

0
krk

m

r
krk xfxfxf

k

=











λ −

−

=
∑  by (6), we have 

( ) ( ) ( ) ( ) kkkkkkkk dxgxfdxfxf ,1 γα+≤α+=+  

( ) ( ) ( ) .,,

1

0

0 kkkrr

k

r

r dxgdxgxf γα+αλγ+≤ ∑
−

=

 

( ) ( ) .,

0

0 rr

k

r

r dxgxf ∑
=

αλγ+≤  

Case 2. ( ) ( ) ( ).,max

1

0

1

0
rk

m

r
krrk

m

r
krk xfxfxf

kk

−

−

=
−

−

=
∑∑ λ=












λ  Let min=q  

[ ],1, −Mk  by (6) we have 
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( ) ( )kkkk dxfxf α+=+1  

( ) ( ) ( ) ( )∑
=

− γα+λµ−+µ≤

q

p

kkkpkkpk dxgxfxf

0

,1  

( ) ( ) [ ( ) ( ) r

pk

r

rr

q

p

kpk dxgxfxf ,1

2

0

0

0
∑∑

−−

==

αλγ+λµ−+µ≤  

( ) ] ( ) .,, 111 kkkpkpkpk dxgdxg γα+γα+ −−−−−−  

By ( ) ( ) ( ){ },20,0:,2,,2,1,.2,1 −−≤≤≤≤⊂−−× qkrqprpqkq ⋯⋯  

,,1
0

λ≥λ=λ∑
=

kpkp

q

p

 we have 

( ) ( ) ( ) ( ) ( ) rrr

qk

r

q

p

kpkk dxgxfxfxf ,1

2

0 0

01 α




















λλ+µ−+µ≤ ∑ ∑

−−

= =

+  

( ) ( ) kkk

q

p

pkpkpkkp dxgdxg ,,

0

111 γα+






αλγ+ ∑

=

−−−−−−  

( ) ( ) ( ) ( )






αλγ+µ−+µ≤ ∑

−−

=

2

0

0 ,1

qk

r

rrrk dxgxfxf  

( ) ( ) kkkrr

k

pkr

r dxgdxg ,,

1

1

γα+






αλγ+ ∑

−

−−=

 

( ) ( ) ( ) ( )













αλγ+µ−+µ= ∑

−

=

1

0

0 ,1

k

r

rrrk dxgxfxf  

( ) ., kkk dxgγα+  

By the case 1, we have: 

( ) ( ) ( )













αλγ+µ≤ ∑

−

=

+

1

0

01 ,

k

r

rrrk dxgxfxf  
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( ) ( ) ( ) ( ) kkkrr

k

r

r dxgdxgxf ,,1

1

0

0 γα+













αλγ+µ−+ ∑

−

=

 

( ) ( ) ( ) kkkrr

k

r

r dxgdxgxf ,,

1

0

0 γα+αλγ+≤ ∑
−

=

 

( ) ( ) .,

0

0 rr

k

r

r dxgxf ∑
=

αλγ+≤  

The conclusion follows. 

Theorem 3.1. Suppose Assumption 3.1 holds, and the sequences kx  and kd  

are generated by Algorithm 2.1, then 

 ( ) .0,lim =
∞→

kk
k

dxg  (10) 

Proof. To get a contradiction, we assume that there exist a boundless sequence 

index set K, and ,0>ε  which satisfy ( ) ε−≤kk dxg ,  for any ,Kk ∈  based on 

Lemma 3.4, for any ,Kk ∈  we have, 

 ( ) ( ) ( )., 0

1

,0

k

k

Krr

rrr xfxfdxg −≤αλγ− ∑
−

∈=

 (11) 

By Lemma 3.1, ( ) ,1
2

kk
T
k gdg η−≥−  it means 

 
( )

( ).1
,

2
η−≥−

k

kk

g

dxg
 (12) 

Together with (7), (11) and (12), we have: 

( ) ( ) ( )∑
−

∈=

αλγ−≥−

1

,0

0 ,

k

Krr

rrrk dxgxfxf  

∑
−

∈=

αλγε≥

1

,0

k

Krr

r  
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( ) ( )
∑

−

∈=












⋅
βγ−

λγε≥

1

,0
2

,1
,1min

k

Krr r

rr

d

dxg

L
 

( )
( ) .1

1
,1min

1

,0
∑

−

∈=






 η−⋅

βγ−
λγε≥

k

Krr
L

 

Since ( )xf  is bounded below, let ( ),Kkk ∈∞→  we have 

( ) ( ) ∞→−≥∞ kxfxf 0  

which is a contradiction, so the conclusion holds. 

Theorem 3.2. Suppose Assumption 3.1 holds, and the sequence { }kx  is 

generated by Algorithm 2.1, then we have 

.0lim =
∞→

k
k

g  

Proof. By Lemma 3.1 and Theorem 3.1, we have 

( ) ( ) 0,lim1lim0
2 =≥−η≥

∞→∞→
kk

k
k

k
dxgg  

which implies 

.0lim =
∞→

k
k

g  

4. Numerical Examples 

In this section, we give the numerical results that are obtained from the standard 

test problems. We fixed the value of ,kµ  which seems to work reasonably well for a 

broad class of problems. Let 
( )

,
1

,75.0,10,5.0,88.0
km

M kr =λ=γ==β=η  

( )( ),1,,1,0 −= kmr ⋯  the termination criterion is .10 5−≤kg  All the problems 

are computed in Matlab 7.1. 

Problem 1. ( ) ( ) ( ) ,1100
2

1
22

12 xxxxf −+−=  
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[ ] [ ] ( ) .0*,1,1*,1,2.10 ==′−= xfxx  

Problem 2. ( ) ( ) ( ) ( ) ( )2
4

2
3

2
3

2
1

2
2

2
1 9011100 xxxxxxxf −+−+−+−=  

[( ) ( ) ] ( )( ),118.19111.10 42
2

4
2

2 −−+−+−+ xxxx  

[ ] [ ] ( ) .0*,1,1,1,1*,1,3,1,30 ==′−−−−= xfxx  

Problem 3. ( ) ( ) ( ) ( ) ( ) ,102510
4

41
4

32
2

43
2

21 xxxxxxxxxf −+−+−++=  

[ ] [ ] ( ) .0*,0,0,0,0*,1,0,1,30 ==′−= xfxx  

Problem 4. ( ) ( ) ( ) ,1100
2

1
23

12 xxxxf −+−=  

[ ] [ ] ( ) .0*,1,1*,1,2.10 ==′−−= xfxx  

Problem 5. ( ) ( ) ( ) ( ) *10*2*5*10
4

32
4

43
4

21 +−+−++= xxxxxxxf  

( ) ,*10
4

41 xx −  

( ) ( ) .0*,0,0,0,0*,2,2,2,20 ==−−= fxx
TT

 

Problem 6. ( ) ( ) ( ) ( ) ( ) ( ) ,1111
6

5
4

4
2

3
2

21
2

1 −+−+−+−+−= xxxxxxxf  

( ) ( ) .0*,1,1,1,1,1*,2,2,2,2,20 === fxx
TT

 

Table 1. 

Algorithm 1 0=µ  1.0=µ

 

2.0=µ  3.0=µ

 

4.0=µ  5.0=µ  

Problem 1 288 271 467 546 677 577 

Problem 2 4303 4223 4468 4690 4333 3815 

Problem 3 338 672 734 99 1122 872 

Problem 4 1796 1587 1349 1772 1958 1341 
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Problem 5 493 495 179 137 177 152 

Problem 6 1124 1187 1001 923 733 729 

 

Algorithm 1 6.0=µ  7.0=µ  8.0=µ  9.0=µ  1=µ  

Problem 1 535 673 644 617 943 

Problem 2 4126 3836 3954 3850 4282 

Problem 3 405 1020 1168 1176 4326 

Problem 4 1519 1305 1049 1479 2732 

Problem 5 336 349 293 170 654 

Problem 6 717 101 1170 1285 1762 

Given 10=M  in Algorithm 2.1, the results in Table 1 indicate that the numerical 

results depend on the value of the parameter .µ  It is easy to see that the modified 

nonmonotone line search is actually the monotone Armijo line search when ,1=µ  

and the nonmonotone line search proposed by Yu and Pu [15] when .0=µ  We can 

see the numerical results are efficient and improved in most examples. 

Moreover, we also compare our method with other methods proposed in [14] 

and [23], the results are listed in Table 2, where 10,1.0 ==µ M  are given in 

Algorithm 2.1, 10=M  in [23] and ln  represents the number of successful 

iterations. 

Table 2. 

Problem 1 Algorithm in [14] Algorithm in [23] Algorithm 2.1 

ln  943 288 271 

Problem 2 Algorithm in [14] Algorithm in [23] Algorithm 2.1 

ln  4282 4303 3815 
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Problem 3 Algorithm in [14] Algorithm in [23] Algorithm 2.1 

ln  4326 338 99 

Problem 4 Algorithm in [14] Algorithm in [23] Algorithm 2.1 

ln  2732 1796 1049 

Problem 5 Algorithm in [14] Algorithm in [23] Algorithm 2.1 

ln  654 493 137 

Problem 6 Algorithm in [14] Algorithm in [23] Algorithm 2.1 

ln  1762 1124 101 
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