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Abstract 

We extend the simple non-Markovian walk model by memory enhanced 

with time which describes underlying mechanism of anomalous diffusions. 

In the extended models, we consider the competitions between positive 

and negative memory by controlling a parameter α  and avalanche 

memory effect for various avalanche size. The models show well the 

anomalous behavior of diffusion including both superdiffusion and 

subdiffusion like the memory enhanced model, while for small α  the 

steps are much more correlated than for the memory enhanced model. The 

avalanche memory does not affect the temporal correlation between steps 

with the same Hurst exponent as the case without avalanches in long time 

region, while it induces oscillatory temporal correlation in short time 

region. 

1. Introduction 

Random walks [1, 2] which were proposed to stochastically formulate transport 

and diffusion phenomena, have played a key role in statistical physics for over a 

century. The key quantity characterizing the random walks is the mean squared 
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displacement (MSD) ( )tx
2  which grows linearly with time. Hurst, however, found 

the persistence of hydrologic time series indicating that the MSD behaves in 

nonlinear way [3-5] and in recent, such phenomena have been observed in many 

different systems such as chaotic [6], biophysical [7-11], economic systems[12, 13], 

and etc. The nonlinear behavior is recognized as anomalous diffusions compared 

with the linear behavior that is regarded as normal diffusion, and is characterized in 

terms of the MSD 

 ( ) .~ 22 H
ttx  (1) 

Here …  means average over independent realizations, i.e., ensemble average, in 

general, in non-equilibrium. H is called as the anomalous diffusion or the Hurst 

exponent which classifies superdiffusion ( )21>H  in which the past and future 

random variables are positively correlated and thus persistence is exhibited, and 

subdiffusion ( )210 << H  which behaves in the opposite way, showing 

antipersistence. 

A variety of models to describe the mechanism have been proposed [14-18] but 

they do not give any a universal mechanism but rather suggest very distinct origins, 

separately. The representative models among them are the fractional Brownian 

motion (fBM) [14], the Lévy fights [16, 19, 21, 22], and the continuous time random 

walks (CTRW) [15, 20, 22]. In the fBM, long-ranged temporal correlations between 

steps is given so that MSD scales like Eq. (1) within the range of ,10 << H  and 

thus fBM describes both subdiffusion and superdiffusion however, its correlation is 

mathematically constructed and it shows stationary behaviors unlike nonstationary 

nature shown in real experiments and systems. Meanwhile other two models mimic 

further specific systems and describe only one region of anomalous diffusions, 

respectively. In Lévy fights, step-length distribution follows the power-law 

asymptotic behavior, so that the average distance per a step is infinite, which invokes 

superdiffusions. In CTRW model a time interval between two consecutive steps is a 

continuous random variable which is drawn according to the waiting time distribution 

(WTD). For the WTD possessing the finite average of waiting time the MSD is 

linearly dependent on time, that is, the normal diffusive behavior is shown, while for 

the cases where the WTD behaves asymptotically as power-laws and thus possesses 

infinite average of waiting time, subdiffusive behaviors are induced. 
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Recently, various microscopic non-Markovian models with memory effect which 

may be a novel key origin were proposed. In [23], a walker jumps persistently or 

antipersistently according to prior steps with a probability parameter and below the 

critical value of the control parameter, the model shows normal diffusive behaviors 

while above it, superdiffusive behaviors. Due to its simpleness, the microscopic 

memory effect, was easily applied to other models, among which Cressoni et. al. 

suggested that the loss of recent memory rather than the distant past can induce 

persistence, which is relate to the repetitive behaviors, psychological symptoms of 

Alzheimer disease [24]. In [25], it was shown that by adding a possibility that a 

walker does not move at all in the model of [23], diffusive, superdiffusive, and 

subdiffusive behaviors can exhibit in different parameter regimes. It has advantage to 

describe the anomalous diffusion within a single model just by changing the 

parameters, however, in this case, the subdiffusive property may be caused by the 

staying behavior rather than the memory effect and thus superdiffusion and 

subdiffusion are not induced by a single origin. 

Meanwhile, we proposed the models with time-varying memory and the 

competition between Markovian and non-Markovian processes which describe 

anomalous diffusions including super and sub diffusions [26]. In the first model, non-

Markovian processes induced by the full memory of entire history and Markovian 

processes constructed by the original random walk are competed by a probability 

parameter. In the second model, non-Markovian processes are induced by the latest 

memory rather than full memory and its realizations vary with time. From these 

models we found that in the regime where non Markovian nature pre-vails, 

superdiffusion is induced by the perfect memory, while the latest memory enhanced 

with time cause subdiffusions as well as superdiffusions. In this paper, we consider 

another perspective, the competition between persistent and antipersistent behavior 

and avalanche memory effect, in anomalous diffusions by proposing two novel 

models. 

2. Models and Results 

The following non-Markovian stochastic model is proposed, where for 

1,1 +σ> tt  is given by 
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and the walker starts at origin and moves to the right or left with equal probability at 

time .1=t  Over time, the probability of taking the opposite direction with the latest 

step decreases and the probability of taking the same direction with the latest step 

increases. The larger value of parameter α  is, the much faster the probability varies 

with time. The competition between the antipersistence and persistence with the 

previous step varies with time and its degree is controlled by the parameter .α  We 

shall refer to this model as model A. Meanwhile in Eq. (2) when the probability of 

persistence and antipersistence are exchanged, the antipersistence will be dominant in 

the long time limit. We call it model B 

Figure 1 shows the plot of the MSD versus time t for various α  and in the inset 

H2  versus α  is shown for the model A. The solid lines are the fitting lines of the 

MSDs for 1.0=α  and 9.0=α  whose slopes are 1.21 and 1.92, respectively. The 

line in the inset follows the relation ( )α+= 12H  which is the result of the model in 

ref. [26] where the antipersistent behavior is replaced a random process, i.e., 1+  or 

1−  is chosen equally with probability .1 α
t  Except for 1.0=α  the data is good 

agreement with the line. It indicates that the antipersistence may make the same effect 

as the random process for large ,α  but for small α  antipersistence strengths the 

persistent tendency rather than random process. 

For the model B, the MSDs are shown in Figure 2 and although they follow the 

persistent behavior in the early time, they eventually show the antipersistent behavior 

with growing time. The fitting lines represent 78.0~2 −H  and 17.0~2 −H  for 

1.0=α  and ,9.0  respectively. The inset shows the plot of H2  versus α  and the 

solid line represents that ,12 α−=H  which the results for the model in [26]. the 

data deviates from the guide line, that is, the persistent probability affects the 

antipersistent behavior, on the whole. 

We next consider an another aspect of anomalous diffusion by suggesting 

avalanche memory which mimics successive steps into one direction during a certain 

interval. It is embodied as an avalanche memory model in which the rule of above 

proposed model is generalized, the time t in the probability of Eq. (2) is replaced by 
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,τ  the moment happening avalanche step of which size s is fixed and thus real time t 

becomes .* τ= st  That is, during s time interval, a walker successively steps into 

one direction which is decided by Eq. (2). Such successive steps into one direction 

would be regarded as successive memory for the previous step in a time interval. 

Figure 3 shows the plot of the MSD versus time t with 100=s  for the 

avalanche model A. It shows quite different picture from the case of ,1=s  the model 

A. The initial avalanche induces the ballistic diffusion in the range of st <<0  and 

the oscillatory behavior is shown after the initial avalanche within a certain period of 

time, which is invoked by the avalanche steps. Specially, for 1.0=α  the oscillatory 

behavior is vivid, that is, the slower varying probability with time induces the clear 

oscillation due to the anti-correlation between step avalanches. The inset represents 

,12 α+=H  which is the same as the result of model A, deviating slightly for just 

small α  from the line. 

For the avalanche model B, the MSDs are shown in Figure 4 which also show 

the ballistic diffusion by the initial avalanche in early time region and small 

oscillations after ballistic behavior. In the long time limit, it also shows the 

subdiffusion behavior but the Hurst exponents are not linear for the parameter α  and 

deviated from the solid guide line, .12 α−=H  

To confirm more precisely the relation between the Hurst exponent and the 

parameter α  and the avalanche step effect, we ran the extra simulations where 50 

ensembles including the 1000 independent runnings were built for 100,10,1=s  and 

,1000  respectively and the 50 values of Hurst exponent obtained from each 

ensembles are averaged and its standard deviation was calculated. The results were 

summarized in Table 1 which indicates that the Hurst exponent does not depend on 

the size of avalanche. 

3. Conclusion 

In conclusion, we have studied how do the competition between persistent and 

antipersistent nature and the avalanche step affect on the anomalous diffusion 

behavior by introducing microscopic non Markovian models. For growing 

persistence with time, mixing antipersistent and persistent steps with probability 

invokes random process in part and thus there is no difference between the diffusion 
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by the random process and persistence in certain range of the parameter, however, for 

the case in which antipersistent behavior hold on somewhat even in the long time 

limit, the antipersistent plays role of strenghtening the persistence rather than random 

process by giving the larger Hurst exponent. Meanwhile, for growing antipersistence 

with time, the persistence nature makes different affections unlike the random 

process on the diffusive behaviors on the whole. The avalanche step have shown the 

novel features in anomalous diffusion, the ballistic, oscillatory, and sub or 

superdiffusion coexist, but the long time limit behavior is the same as that of the case 

without avalanche. 

 

 

 

 

Figure 1. The plot of the MSD 
22

tt xx −  versus time t for the model A with 

,7.0,5.0,3.0,1.0=α  and 9.0  from the bottom to the top. The data were measured 

with the initial condition where a walker moves to the right or left with equal 

probability 21  and 310  independent realizations. The inset shows the plots of the 

Hurst exponent for various .α  The solid line represents .12 α+=H  
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Figure 2. The plot shows the MSD as a function of time for the model B with 

,7.0,5.0,3.0,1.0=α  and 9.0  from the top to the bottom. The inset shows the Hurst 

exponent versus the parameter α  and the solid line is .12 α−=H  

 

 

Figure 3. The plot of the MSD 
22

tt xx −  versus time t for the avalanche model 

A with 100=s  and ,7.0,5.0,3.0,1.0=α  and 9.0  from the bottom to the top. The 

inset shows the plots of the Husrt exponent for various .α  The solid line represents 

.12 α+=H  
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Figure 4. The plot shows the MSD as a function of time for the avalanche model B 

with 100=s  and ,7.0,5.0,3.0,1.0=α  and 9.0  from the top to the bottom. The 

inset shows the Hurst exponent versus the parameter α  and the solid line is 

.12 α−=H  

 

Table 1. The values of the Hurst exponent for the above mentioned models with the 

various parameter α  

    α    

model size 0.1 0.3 0.5 0.5 0.9 

A 1 1.21(0.022) 1.35(0.020) 1.52(0.019) 1.72(0.021) 1.92(0.014) 

 10 1.21(0.019) 1.35(0.020) 1.52(0.017) 1.72(0.018) 1.92(0.016) 

 100 1.21(0.018) 1.35(0.019) 1.52(0.021) 1.72(0.021) 1.92(0.016) 

 1000 1.21(0.018) 1.35(0.020) 1.52(0.020) 1.72(0.020) 1.92(0.014) 

B 1 0.78(0.021) 0.64(0.019) 0.46(0.017) 0.30(0.016) 0.17(0.013) 

 10 0.78(0.019) 0.64(0.017) 0.47(0.015) 0.31(0.013) 0.17(0.013) 

 100 0.78(0.015) 0.64(0.019) 0.47(0.016) 0.30(0.016) 0.17(0.014) 

 1000 0.78(0.018) 0.64(0.017) 0.47(0.019) 0.31(0.015) 0.17(0.010) 



TIME-VARYING AND AVALANCHINE MEMORY EFFECT … 

 

83 

References 

 [1] K. Pearson, Nature 72 (1905), 294-342. 

 [2] B. D. Hughes, Random Walks and Random Environments, Oxford Science, New 

York, 1995. 

 [3] H. E. Hurst, Trans. Am. Soc. Civ. Eng. 116 (1951), 770; H. E. Hurst, R. O. Black and 

Y. M. Simaika, Long Term Storage: An Experimental Study, Constable, London, 

1965. 

 [4] I. Rodriguez-Iturbe and A. Rinaldo, Fractal River Basins: Chance and Self-

organization, Cambridge University Press, Cambridge, 1997. 

 [5] H.-J. Kim, I.-M. Kim and J. M. Kim, Phys. Rev. E 62 (2000), 3121. 

 [6] T. H. Solomon, E. R. Weeks and H. L. Swinney, Phys. Rev. Lett. 71 (1993), 3975. 

 [7] E. Barkai, Y. Garini and R. Metzler, Phys. Today 65 (2012), 29. 

 [8] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai and Y. Garini, Phys. 

Rev. Lett. 103 (2009), 018102; E. Kepten, I. Bronshtein and Y. Garini, Phys. Rev. E 

87 (2013), 052713. 

 [9] I. Golding and E. C. Cox, Proc. Natl. Sci. USA 101 (2004), 11310; I. Golding and E. 

C. Cox, Phys. Rev. Lett. 96 (2006), 098102. 

 [10] J. Szymanski and M. Weiss, Phys. Rev. Lett. 103 (2009), 038102. 

 [11] A. V. Weigel, B. Simon, M. M. Tamkun and D. Krapf, Proc. Natl. Acad. Sci. USA 108 

(2011), 6438. 

 [12] R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics, Cambridge 

University Press, Cambridge, 2000. 

 [13] J.-P. Bouchaud and M. Potters, Theory of Financial Risks, Cambridge University 

Press, Cambridge, 2000. 

 [14] B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10 (1968), 422. 

 [15] R. Metzler and J. Klafter, Phys. Rep. 339 (2000), 1; R. Metzler and J. Klafter, J. Phys. 

A  Math. Gen. 37 (2004), R161. 

 [16] M. F. Shlesinger, G. M. Zaslavskii and U. Frisch, eds., Lévy Flights and Related 

Topics in Physics, Springer, Berlin, 1995. 

 [17] D. ben-Avraham and S. Havlin, Diffusion and Reaction in Fractals and Disordered 

Sytems, Cambridge University Press, Cambridge, 2000. 



HYUN-JOO KIM 

 

84 

 [18] J.-P. Bouchaud and A. Georges, Phys. Rep. 195 (1990), 127. 

 [19] R. Kutner, A. Pekalski and K. Sznajd-Weron, eds., Anomalous Diffusion. From Basics 

to Applications, Springer, Berlin, 1999. 

 [20] J. W. Haus and K. W. Kehr, Phys. Rep. 150 (1987), 263 

 [21] J. Klafter, A. Blumen and M. F. Shlesinger, Phys. Rev. A 35 (1987), 3081. 

 [22] J. Klafter and I. M. Sokolov, First Steps in Random Walks, 1st. ed., Oxford University 

Press, New York, 2011. 

 [23] G. M. Schutz and S. Trimper, Phys. Rev. E 70 (2004), 045101. 

 [24] J. C. Cressoni, M. A. A. daSilva and G. M. Viswanathan, Phys. Rev. Lett. 98 (2007), 

070603. 

 [25] N. Kumar, U. Harbola and K. Lindenberg, Phys. Rev. E 82 (2010), 021101. 

 [26] Hyun-Joo Kim, Phys. Rev. E 90 (2014), 012103. 


