
Fundamental Journal of Modern Physics 

Vol. 8, Issue 1, 2015, Pages 1-14 

Published online at http://www.frdint.com/ 

:esphras and Keywords mass transport, diffusion equation, diffusion into silicon, Laplace’s 

integral transform, diffusion of Arsenic into Silicon. 

*Corresponding author 

Received December 19, 2014 

 © 2015 Fundamental Research and Development International 

DIFFUSION IN SEMICONDUCTORS BY USING LAPLACE’S 

INTEGRAL TRANSFORM TECHNIQUE 

M. K. EL-ADAWI
1,*

, S. E.-S. ABDEL-GHANY
2
 and S. A. SHALABY

1
 

1
Physics Department 

Faculty of Education 

Ain Shams University 

Heliopolis, Cairo, Egypt 

e-mail: adawish1@hotmail.com 

             Safaashalaby16@hotmail.com 

2
Physics Department 

Faculty of Science 

Benha University 

Benha, Egypt 

e-mail: saeedkmghany@yahoo.com 

said.alsayed@fsc.bu.edu.eg 

Abstract 

A theoretical approach to study diffusion in semiconductors is introduced. 

A mass-energy model for diffusion atoms into target materials has been 

built up. The diffusion equation written in terms of the incident atom 

current density (fluence) is introduced. Laplace’s Integral Transform 

Technique is applied to get the solution. The concentration function is 

obtained using Fick’s first law that relates the mass transport with the 

concentration gradient, together with a flux balance equation. 

Computations for the case of time-independent incident atomic flux of 

different values of Phosphorus, Gallium, Indium and Arsenic diffused into 
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Silicon target material are given as illustrative examples. Results show that 

the penetration depth of Phosphorus atoms into Silicon is much greater 

than that for Indium atoms, while the concentration atoms of Phosphorus 

atoms in Silicon is much less than that for Indium atoms. The same 

behavior is shown with respect to Arsenic and Gallium atoms diffused in 

Silicon target. 

1. Introduction 

It is well known that the selective introduction of impurities (dopants) into 

semiconductors and most materials by diffusion or ion implantation leads to changes 

in their chemical, physical, and electronic properties [1, 2]. The structure and the 

electrical conductivity may also be modified. 

This topic has aroused the interest of many researchers due to its important 

applications, such as in the production of electronic devices. 

Doping by diffusion is still one of the acceptable processes that have important 

technological applications [3, 4], such as the fabrication of the integrated circuits (IC) 

that forms the basis of many of the solid state device technology. 

It is also useful in the preparation of alloys which possess low surface energy in 

the metallic surface [5]. This makes it possible to realize dropwise condensation 

mode on such surfaces, which has vital technological applications. Doping permits 

the freedom to design the desired activation energy of a dopant in a semiconductor 

[6]. Silicon is the main n-type dopant used in GaAs, and it is usually incorporated 

into GaAs by ion implantation or by diffusion employing an external source [7]. 

In practice, the diffusion process consists of deposition followed by diffusion 

(driven-in process). The development of the theoretical studies of atomic diffusion is 

still of great interest [8-11]. 

The diffusion of Boron and Phosphorus into Silicon has been investigated by the 

statistical moment method (SMM). A mass transfer model for doping a metal target 

at elevated temperatures has been built up [12] based on transport of ions in matter 

and radiation enhanced diffusion. The process was simulated by a dynamic Monte 

Carlo (MC) method to calculate the concentration-depth profiles. 

In the present trial, single step diffusion is considered, where a semiconductor 

substrate is exposed to high concentrations of the desired impurity exceeding the 

level required to achieve solid solubility of the dopant at the semiconductor surface. 
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The aim of the present trial is to solve the parabolic diffusion equation written in 

terms of the current density ( )txJ ,  of atoms rather than the concentration, together 

with Fick’s first law and a flux balance equations. The solution is obtained 

analytically using Laplace integral transform technique. As illustrative examples, the 

obtained concentration-depth functions are computed for the diffusion of Phosphorus, 

Gallium, Indium and Arsenic atoms into Silicon target material. Comparison between 

these cases is also considered. 

2. Mathematical Formulation of the Problem 

In setting up the problem, it is assumed that a beam of impurity atoms 

(Phosphorus, Gallium, Indium and Arsenic) of flux density ( )12
0 secm −−J  falls 

normally on the front surface of the material target (Silicon) along the x-axis 

direction where it is partly reflected and partly driven-in into the target slab. This part 

is of amount ( ),secm 12
0

−−jA  where, ( )( )TRA −= 1  stands for an equivalent 

absorption coefficient that depends in general on the energy (E) of the impinging 

atom. It may depend also on the absolute temperature T of the front surface, ( )TR  is 

the reflectivity of the front surface. It is suggested also that the impurity atoms are 

supplied from an undiminished infinite source for the entire duration of diffusion 

process [13]. This driven-in part will be redistributed within the target wafer. 

The concentration function ( )txC ,  of such dopant extends till a penetration 

depth ( )tδ  after which this function vanishes, i.e., the diffusion process stops at this 

limit. 

The mathematical formulation of such a problem is given as follows: 

The parabolic diffusion equation can be written in the form 

 
( )

( ) ,0,0,,
, 2 >≤≤∇=

∂

∂
tdxtxJD

t

txJ
x  (1) 

where 

( )secm2D  is the diffusion coefficient. 

Equation (1) is subjected to the following conditions 

(i) At ( ) ,00,,0 == xJt  
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(ii) At ( ) ( ),1,0,0 0 RJtJx −==  

(iii) At ( ) ,0,, →δδ= tJx  and 

(iv) ( ) .0, →δ tC  

( )12
0 secm −−J  is defined as the number of the incident atoms per unit area per 

second, ( )( )3m, −txC  is the concentration of the doped atoms at the boundary x at 

time t measured from the beginning of the exposure time. 

Equation (1) can be rewritten in the form 

 ( )
( )

.
,1

,2

t

txJ

D
txJx ∂

∂
=∇  (2) 

Taking Laplace transform of equation (2) with respect to the time variable t gives 

 ( ) ( ) ( )[ ],0,,
1

,
2

2

xJsxJs
D

sxJ
dx

d
−=  (3) 

where ( )sxJ ,  is the Laplace transform of the function ( )., txJ  

The initial condition (i) makes it possible to write equation (3) in the form 

 ( ) ( ).,,
2

2

sxJ
D

s
sxJ

dx

d
=  (4) 

The solution is written in the form 

 ( ) .,
x

D

s
x

D

s

BeAesxJ
−

+=  (5) 

The Laplace transform of the boundary condition (ii) for =0J  constant gives 

 ( )
( )( )

.
1

,0 0

s

TRJ
sJ

−
=  (6) 

Substituting (6) into (5) at ,0=x  one gets 

 
( )( )

.
10

s

TRJ
BA

−
=+  (7) 

Similarly, the Laplace transform of the boundary condition (iii) gives 

 ( ) .0, =δ sJ  (8) 
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Substituting equation (8) into equation (5) at ,δ=x  one gets 

 .0=+
δ−δ

D

s

D

s

BeAe  (9) 

Solving simultaneously, equations (7) and (9), one gets 

 
( )( ) δ−









δ

−
−= D

s

e

D

s
s

TRJ
A

sinh2

10  (10) 

and 

 
( )( )

.

sinh2

10
δ+









δ

−
= D

s

e

D

s
s

TRJ
B  (11) 

Substituting equations (10) and (11) into equation (5), one gets the solution in the 

form 

( )
( )( ) ( ) ( )

,

sinh2

1
, 0














−









δ

−
=

−δ−−δ x
D

s
x

D

s

ee

D

s
s

TRJ
sxJ  (12) 

( )
( )( )

( ) .sinh

sinh

1
, 0









−δ

δ

−
= x

D

s

D

s
s

TRJ
sxJ  (13) 

( )txJ ,  is obtained by using the inverse Laplace transform of equation (13) (standard 

tables [14, 15]), in the form 

( )txJ ,  

( )( )
( ) ( )

.sin
12

1

2

1

0

































δ

−δπ









 −

π
+

δ

−δ
−=









δ

π
−∞

=
∑ xn

e
n

x
TRJ

t
n

D

n

n

 (14) 

3. Determination of the Concentration Function ( ) 3m−tx,C  

Considering Fick’s first law 
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 ( ) ( ).,, txCDtxJ ∇−=  (15) 

Thus 

 ( )

( )

( )

( ) .,
1

,

0

,

,0
∫∫ −=

xtxc

tc

dxtxJ
D

txdC  (16) 

From equations (14) and (16) one gets 

( ) ( )
( )( )

D

TRJ
tCtxC

−
−=

1
,0, 0  

( ) ( )
.coscos

21

2
1

22

2
2























 π−








δ

−δπ

π

δ−
+









δ
−× ∑

∞

=









δ

π
−

n
xn

e
n

x
x

n

t
n

Dn

 (17) 

Moreover, let us consider the balance equation for the particle flux density written in 

the form 

 ( )( ) ( ) .,1

00

0 ∫∫
δ

=− dxtxCdtTRJ

t

 (18) 

Substituting equation (17) into equation (18), gives the expression for ( )tC ,0  in the 

form 

 ( ) ( )( )
( )( )

.
2

3

1
1

1
,0

2

1
22

0

0
0

















π

δ
−






 δ−

+−
δ

=








δ

π
−∞

=
∑∫

t
n

D

n

t

e
nD

TRJ
dtTRJtC  (19) 

The concentration function ( )txC ,  can be obtained by substituting (19) into (17) in 

the form 

( ) ( )( )
( )( )

( ) ( )
.

cos
21

23
1

1
1

, 2

1
22

2

0

0
0





















δ

−δπ

π

δ−

−










δ
+−

δ

−
+−

δ
=









δ

π
−∞

=
∑

∫
xn

e
n

x
x

D

TRJ
dtTRJtxC

t
n

D

n

n

t

 

 (20) 
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4. Determination of the Diffusion Penetration Depth ( )mδ  

Using the boundary condition (iv) at δ=x  in equation (20) one gets 

( )( )
( )( ) ( )

.
21

6

1
1

1
0

1
220

0
0

2

















π

δ−
−






 δ

−
−

+−
δ

= ∑∫
∞

=









δ

π
−

n

t
n

Dnt

e
nD

TRJ
dtTRJ  (21) 

Considering the order of the terms in equation (21), one can neglect the term 

( )
∑
∞

=









δ

π
−

π

δ−

1
22

2

21

n

t
n

Dn

e
n

 with respect to .
6

δ
 Thus one finally gets the diffusion 

penetration depth function as 

 .6Dt≅δ  (22) 

5. Computations 

Computations are carried out according to values in Table 1, considering 

constant incident particle flux ,secm105 1215
0

−−×=J  ( )kTEDD vExp0=  

12 secm −  and ( )TR  for silicon )T51012.3322.0 −×+=  [16] in the range 

( ).K1685-K300  

Table 1. The values of vED ,0  for the diffused elements of Phosphorus, Gallium, 

Indium and Arsenic diffused into Silicon target material [17] 

                Parameters 

Element 

sec/m, 2
0D  eV,vE  

Arsenic 3.2 E-5 3.56 

Phosphorus 3.0 E-4 3.68 

Indium 16 E-4 3.9 

Gallium 3.6 E-4 3.51 

It is suggested that the relative size of the dopant atom relative to the host 

medium atoms plays also an important role in the diffusion process. Table 2 gives the 

size of the impurity Gallium and Indium atoms relative to Silicon [18]. 
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Table 2. Size of some impurity atoms relative to Silicon [18] 

Element Size relative to Silicon 

Gallium 1.07 

Indium 1.22 

The electron configuration of neutral atoms in their ground states is related also to 

the size of the diffused atoms. 

Table 3. The outer configuration for some neutral atoms in their ground states 

Element Electron configuration 

14Si  22 p3s3  

15P  32 p3s3  

31Ga  12 p4s4  

33As  3p4s4 2  

49In  12 p5s5  

The following special cases are considered: 

(i) sec1=t  

The concentration function ( )txC ,  against the depth x is computed for the 

diffusion of Indium, Phosphorous, into Silicon (Figure 1, for 1-E313.3=R  for 

,K300=T  and Figure 3, for 1-E5.3=R  and ).K900=T  The same dependence 

for the diffusion of Arsenic and Gallium, into Silicon (Figure 2, for 1-E313.3=R  

and ,K300=T  Figure 4, for 1-E5.3=R  and ).K900=T  

(ii) At ( ) m10δ=x  

The concentration function ( )txC ,  against the diffusion time t is computed for 

the diffusion of Indium, Phosphorous, into Silicon (Figure 5, for ,1-E313.3=R  

K300=T  and Figure 7, for ).K900,1-E5.3 == TR  The same dependence for 

the diffusion of Arsenic and Gallium, into Silicon (Figure 6, for 1-E313.3=R and 
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,K300=T  Figure 8, for 1-E5.3=R  and ).K900=T  

6. Discussions 

1. The obtained expression for the concentration function ( ) 3m, −txC  (equation 

(20)) reveals that it depends principally on the flux density .sm, 12
0

−−J  The 

dependence is linear for constant flux density. 

2. The same function depends fundamentally on the diffusion coefficient 

.sm, 12 −D  

3. The diffusion penetration depth depends basically on the diffusion coefficient 

12sm, −D  which in turn depends on the absolute temperature T. So the penetration 

depth becomes greater and the concentration becomes smaller at K900=T  than 

that at K.300=T  Such depth depends also on the size of the dopant atom relative 

to the host atom, this is evident in Figures 1, 2, 3 and 4. 

4. Dopants of higher relative sizes are more accumulated than dopants of smaller 

relative sizes at a certain layer and at a certain diffusion time (Figures 5, 6, 7 and 8). 

7. Conclusions 

1. The concentration of the Indium and Arsenic dopants into Silicon at a certain 

layer with time is greater than that for Phosphorous and Gallium dopants into Silicon 

for the same operating conditions. 

2. The penetration depth of the Indium and Arsenic are less than that for 

Phosphorous and Gallium into Silicon for the same operating conditions. 
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Figure 1. Shows the concentration of Indium and Phosphorus in Silicon as a function 

of the depth in the Silicon target. At 1-E313.3sec,1 == Rt  and K.300=T  

 

Figure 2. Shows the concentration of Indium and Phosphorus in Silicon as a function 

of the depth in the Silicon target. At 1-E3501.3sec,1 == Rt  and K.900=T  
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Figure 3. Shows the concentration of Arsenic and Gallium in Silicon as a function of 

the depth in the Silicon target. At 1-E313.3sec,1 == Rt  and K.300=T  

 

Figure 4. Shows the concentration of Arsenic and Gallium in Silicon as a function of 

the depth in the Silicon target. At 1-E3501.3sec,1 == Rt  and K.900=T  
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Figure 5. Shows the time dependence of the concentration of Indium and Phosphorus 

in Silicon target. At 1-E313.3m,10 =δ= Rx  and K.300=T  

 

Figure 6. Shows the time dependence of the concentration of Indium and Phosphorus 

in Silicon target. At 1-E3501.3m,10 =δ= Rx  and K.900=T  
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Figure 7. Shows the time dependence of the concentration of Arsenic and Gallium in 

Silicon target. At 1-E313.3m,10 =δ= Rx  and K.300=T  

 

Figure 8. Shows the time dependence of the concentration of Arsenic and Gallium in 

Silicon. 1-E3501.3m,10 =δ= Rx  and K.900=T  


