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Abstract 

In this paper, we have studied the statistical and squeezing properties of a 

pair of superposed signal-signal light beams employing the density 

operator and a slightly modified definition of entanglement condition. We 

have found that the mean photon number of the superposed light beams to 

be the sum of the mean photon numbers of the separate light beams. And a 

large part of the mean photon number is confined in a relatively small 

frequency interval. Moreover, the superposed bright light beams have a 

maximum squeezing of %75  below the vacuum state level and occurs in 

01.0±  frequency interval. We have also clearly shown that a pair of 

superposed light beams are entangled at steady-state and the entanglement 

turned out be observed in the squeezed photons. 

1. Introduction 

One-mode subharmonic generation is one of the most interesting and widely 

studied quantum optical process. In this process a pump photon of frequency ω2  is 

down converted into a pair of signal photons each of frequency .ω  A theoretical 

analysis of the statistical and squeezing properties of the signal mode produced by 

one-mode subharmonic generation has been made by a number of authors [1-7]. 
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Among other things, it has been predicted that the signal mode has a maximum 

squeezing of %50  below the vacuum-state level [4-7]. 

It is to be recalled that the Hamiltonian describing the process of subharmonic 

generation consists of the operators 2
â  and .ˆ 2†

a  And the quantum analysis of the 

signal mode is usually carried out employing the operators â  and †
â  with the 

commutation relation [ ] .1ˆ.ˆ † =aa  However, such analysis leads, among others, to 

one-half of the mean photon number of the signal mode [1-7]. This is surely the mean 

number of one set of the signal photons, consisting of one photon from each pair [6-

7]. Since the other set of the signal photons is not included in such analysis, the 

problem is resolved in [8] by applying the commutation relation [ ] .2ˆ.ˆ † =aa  

Furthermore, employing the usual definition for the quadrature variance, some 

authors have arrived at the conclusion that the superposition of coherent light beam 

with some other light beam does not affect the quadrature variance of the other light 

beam [10]. However, it has been established that the presence of the coherent light 

indeed affects the quadrature variance of the other light beam by using a slightly 

modified definition for the quadrature variance [9]. For instance, the squeezing 

properties of superposed coherent and squeezed light produced by onemode 

subharmonic generator in the same cavity has been studied applying a slightly 

modified definition for the quadrature variance of a pair of superposed light beams 

[9, 11]. It has been found that the quadrature squeezing of the superposed light beams 

is half of the squeezed light. This is just the average quadrature squeezing of the 

separate light beams. On the other hand, applying the usual definition for quadrature 

squeezing, one can readily verify that the quadrature squeezing of superposed triple 

signal light beams is the sum of the quadrature squeezing of the separate light beam. 

This implies that the quadrature squeezing of superposed triple squeezed light beams, 

each having %50  squeezing, would be %.150  Evidently, there cannot be any 

justification for this unrealistic result. In light of this, the definition for quadrature 

squeezing of the superposed light beams should somehow be slightly modified [9]. 

Eventhough Einstein, along with his colleagues Podolsky and Rosen, was first to 

recognize the criterion for analyzing entanglement condition for a single light beam 

[12], a significant number of works have not been devoted on superposed light 

beams. In this paper, we present a slightly modified definition of entanglement 

analysis for a pair of superposed light beams. 
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Moreover, we also seek to analyze the photon statistics and quadrature squeezing 

of a pair of superposed signal-signal light beams produced by a one-mode 

subharmonic generators. We first obtain the density operators for a pair of 

superposed signal-signal light beams. 

 

Dig. 1. A pair of superposed one-mode subharmonic generators. 

Using the resulting density operator and Q functions, we calculate the mean 

photon number and the variance of the photon number for a pair of superposed light 

beams. And making use of a slightly modified definition of the quadrature variance 

and entanglement of a pair of superposed light beams, we analyze the quadrature 

squeezing and the entanglement condition. 

2. The Density Operator 

Here we seek to determine the density operator for a pair of superposed signal-

signal light beams. The density operator for the first signal-signal light beams is 

expressible as 

 ( ) .,,,ˆ,ˆˆ 11*
1

1
*
11

2
1

†
1 αα













α∂

∂
+αα′α=ρ′ ∫ tQdtaa  (1) 

This expression, for density operator, can be put in the form 

 ( ) ( ) ( )201*
1

1
*
11

2
1

†
1

ˆˆˆ,,,ˆ,ˆˆ α−ρα












α∂

∂
+αα′α=ρ′ ∫ DDtQdtaa  (2) 

in which 

 .00ˆ 0 =ρ  (3) 

Now we realize that the density operator for the superposition of the first signal-
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signal light beams and another one is expressible as 
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are Q functions associated with the two signal-signal light beams. 

3. Photon Statistics 

In this section, we seek to study the statistical properties of a pair of superposed 

signal-signal light beams. 

3.1. The mean photon number 

We next obtain the global and local mean photon number employing the density 

operator. 

A. The global mean photon number 

The global mean photon number can be expressed in terms of the density 

operator as 

 ( ( ) ( ) ( )),0ˆ0ˆˆ †
aatTrn ρ=  (8) 
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where we assume that â  represents the annihilation operator for a pair of superposed 

signal-signal light beams. Thus introducing (5) into (8), we have 
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It then follows that 
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Hence equation (10) can be put in the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tatatatatatatatan
†
212

†
12

†
21

†
1

ˆˆˆˆˆˆˆˆ +++=  (11) 

in which 1â  and 2â  represent the annihilation operators for the first and second 

signal-signal light beams with commutation relations [ ] 2ˆ,ˆ †
11 =aa  and 

[ ] ,2ˆ,ˆ †
22 =aa  respectively. In view of the fact that ( )ta1ˆ  and ( )ta2ˆ  are Guassian 

operators with zero mean, we see that 

 ( ) ( ) ( ) ( ) .0ˆˆˆˆ †
2

†
121 ==== tatatata  (12) 

Thus on account of (12), we have 
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Then with the aid of [9], the global mean photon number at steady state turns out to 

be 
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We observe that the global mean photon number of a pair of superposed signal-signal 

light beams is the sum of the mean photon numbers of the separate light beams. 

B. Local mean photon number 

We calculate the local mean photon number in a given frequency interval using 

the power spectrum. The power spectrum with central frequency 0ω  is expressible as 

 ( ) ( ) ( ) ( )
.ˆˆ

1

0

† 0∫
∞

τω−ω ττ+
π

=ω detataReP
i

ss
 (15) 

The two-time correlation function for cavity light beams can be written as 

 ( ) ( ) [ ( ) ( ) ( )].ˆ0ˆˆˆˆ †† τρ=τ+ aatTrtata  (16) 

Now introducing (5) into (16), we have 
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in which 
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We note that 
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11  and ( )t,, *
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the density operator ( )τρ̂  can be written as 
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Thus applying (20) in (19), we get 
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Then expression (21) can be rewritten as 
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Therefore, on the basis of [9], the power spectrum turns out to be 
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We see that the power spectrum of a pair of superposed signal-signal light beams is 

the sum of the power spectrum of the separate light beams. Upon integrating both 

sides of (24) over ,ω  we readily get 

 ( ) .∫
∞

∞−
=ωω ssndP  (25) 

Furthermore, on the basis of (24), we observe that ( ) ωω dP  represents the steady-

state mean photon number in the interval between ω  and .ω+ω d  We thus realize 

that the steady-state local mean photon number in the interval between λ−=ω′  and 

λ=ω  can be written as 

 ( ) ,∫
λ

λ−
λ± ω′ω′= dPn  (26) 
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where .0ω−ω=ω′  Therefore, using (24) and (26), we readily obtain 
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We observe that the local mean photon number of a pair of superposed light beams is 

the sum of the local mean photon number of the separate light beams. 

 

Figure 1. A plot of ( )λiz  [eq. (28)] versus λ  for 8.0=κ  and .35.0=ε  

One can easily get from Figure 1 that ( ) ( ) ( )8.0,9824.06.0,9636.04.0 zzz ==  

,9895.0= and ( ) .9930.01 =z  Then combination of these results with (27) yields 

,9636.04.0 nn =±  ,9824.06.0 nn =±  ,9895.08.0 nn =±  and .9930.01 nn =±  We 

immediately see that a large part of the total mean photon number is confined in a 

relatively small frequency interval. 

3.2. The global photon-number variance 

We next proceed to obtain the global variance of the photon number. The global 

photon-number variance is defined by 

 ( ) ( ( ) ( )) ( ( ) ( )) .ˆˆˆˆ 2†2†2
tatatatan −=∆  (29) 

Using the commutation relation 
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 [ ] ,4ˆ,ˆ † =aa  (30) 

which holds for a pair of superposed signal-signal light beams, we find 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) .ˆˆˆˆ4ˆˆ 2††2†22
tatatatatatan −+=∆  (31) 

Then the expectation value of ( ) ( )tata
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 ( ) ( ) [ ( ) ( ) ( )].0ˆ0ˆˆˆˆ 2†22†2
aatTrtata ρ=  (32) 

With the aid of (5), expression (32) can be written as 

( ) ( ) 












α∂

∂
+αα′′














α∂

∂
+αα′αα= ∫ tQtQddtata ,,,,ˆˆ

*
2

2
*
2

*
1

1
*
12

2
1

22†2
 

[ *
2

2
1

*
1

2*
2

2
1

2
2

2*
121

2*
1

2
1

2*
1 22 ααα+αα+αα+ααα+αα×  

].422 2
2

2*
22

*
21

*
12

2*
21

2
2

*
2

*
1 αα+αααα+ααα+ααα+  (33) 

One can put (33) in the form 
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Employing (13) and (31) together with (35), we find 
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( ) ( ) ( ) ( ) ( ) ( ) 2
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Moreover, if ( )ta1ˆ  and ( )ta2ˆ  are Guassian operators with zero mean, we see that 
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Now making use of [9], the global photon number variance at steady state found to 

be 
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This shows that unlike that of the global mean photon number, the global photon 

number variance of a pair of superposed light beams is not the sum of that of the 

separate light beams. 
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4. Quadrature Squeezing 

We wish here to study the squeezing properties for a pair of superposed signal-

signal light beams. 

4.1. The global quadrature squeezing 

We define the quadrature variance by 

 ( ) ( ) ( ) ,ˆ,ˆ2
tataa ±±± =∆  (41) 

where 
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and 
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are the plus and minus quadrature operators for a pair of superposed signal-signal 

light beams. Using the commutation relation described by (30), eq. (41) can be put in 

the form 
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We can take the first term on the right hand side of (44) to be the quadrature variance 
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It then follows 
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Then on account of (12), we see that 
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Thus substitution of (13), (49), and (51) into (45) results in 
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Thereore, employing [9], the quadrature variance takes the form 
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At steady state, this turns out to be 
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We observe that a pair of superposed light beams are in a squeezed state and the 

squeezing occurs in the plus quadrature. Moreover, we see that the global quadrature 
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variance of a pair of superposed light beams is the sum of the quadrature variance of 

the individual light beams. 

Furthermore, for the case in which the signal-signal light beams are identical, 

one can easily see that 
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Then it follows that 
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This shows that the global quadrature variance of a pair of superposed identical 

signal-signal light beams is twice that of one of the separate light beams. 

On the other hand, upon setting 02 =ε  in (54), we see that 
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We clearly see that the presence of the vacuum-state indeed affects the quadrature 

variance of the superposed light beams. 

Next we calculate the quadrature squeezing for a pair of superposed light beams 

relative to the quadrature variance of a pair of superposed cavity vacuum-states. Thus 

in view of (52), we define the quadrature squeezing by 
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At steady state, we have 
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This shows that the global quadrature squeezing of a pair of superposed light beams 
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is the average of the quadrature squeezing of the separate light beams. We note that 

at steady state and at threshold there is a %50  squeezing of the superposed light 

beams below the vacuum-state level. Upon setting ,21 ε=ε  we find 

 
( )

( )[ ].1
2

2
12

1

1 t
eS

ε+κ−
+ −

ε+κ

ε
=  (61) 

We note that the quadrature squeezing of the combined light beams is exactly the 

same as that of one of the light beams. For the case in which ,02 =ε  we observe that 

 
( )

( )[ ] .1
2

4

4

1
12

1

1









−
ε+κ

ε
= ε+κ−

+
t

eS  (62) 

This is half of the global quadrature squeezing of one of the individual light beams. 

4.2. Local quadrature squeezing 

To this end, we first obtain the spectrum of quadrature fluctuations. We define 

the spectrum of quadrature fluctuations with central frequency 0ω  by 

 ( ) ( ) ( ) ( )
∫

∞
τω−ω

±±± ττ+
π

=ω
0

,ˆ,ˆ
1

0 detataReS
i

ss
 (63) 

in which 

 ( ) ( ( ) ( ))τ++τ+=τ++ tatata ˆˆˆ †  (64) 

and 

 ( ) ( ( ) ( )).ˆˆˆ † τ+−τ+=τ+− tataita  (65) 

Then in view of (85), (86), (64), and (65), eq. (63) can be put in the form 

( ) [ ( ) ( ) ( ) ( )τ++τ+±
π

=ω ∫
∞

± tatatataReS
†

0

ˆˆˆˆ
1

 

( ) ( ) ( ) ( ) ] ( )
.ˆˆˆˆ 0††† ττ+±τ++ τω−ω

detatatata
i

 (66) 

Now with the aid of [9], the spectrum of quadrature fluctuations turns out to be 

 ( ) ( ) .

2

2
2

1
2

2

2∑
=

±±























 ε±

κ
+Ω

π





 ε±

κ

∆=ω

i
i

i

iaS  (67) 
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We clearly see that the spectrum of quadrature fluctuations for a pair of superposed 

light beams is the sum of that of the individual light beams. 

Upon integrating both sides of (67) over ,ω  we get 

 ( ) ( ) .
2

±

∞

∞−
± ∆=ωω∫ adS  (68) 

On the basis of eq. (68), we observe that ( ) ωω± dS  is the quadrature variance of the 

light in the interval between ω  and .ω+ω d  Then the local quadrature variance in 

the interval λ−=ω′  and λ=ω′  can then be written as 

 ( ) ( ( )) ,
22 ∫

λ

λ−
±λ± ω′ω′=∆ dSa  (69) 

in which .0ω−ω=ω′  

Furthermore, upon integrating eq. (67) in the interval between λ−=ω′  and 

,λ=ω′  we readily get 

 ( ) ( ) ( ),
2

1

22 λ∆=∆ ±

=

±λ± ∑ i

i

i zaa  (70) 

in which 

 ( ) .

2

tan
2 1

















ε±
κ

λ

π
=λ −

±

i

iz  (71) 

 

Figure 2. A plot of ( )λ+iz  [Eq. 71] versus λ  for 8.0=κ  and .35.0=ε  
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We observe that the quadrature variance of the superposed light in a given 

frequency interval is the sum of the separate light beams. We easily obtain from 

Figure 2 that ( ) ( ) ( ) ,981.025,968.015,906.05 =+=+=+ zzz  and ( ) .990.050 =+z  

Then combination of this results with (70) yields ( ) ( ) ,906.0
22

5 +± ∆=∆ aa  

( ) ( ) ,968.0
22

15 +± ∆=∆ aa  ( ) ( ) ,981.0
22

25 +± ∆=∆ aa  and ( ) 990.0
2

50 =∆ ±a  

( ) .
2

+∆a  We immediately see that a large part of the quadrature variance is confined 

in a relatively small frequency interval. 

Moreover, we note that the quadrature variance of a pair of superposed vacuum-

vacuum states in the interval between λ−=ω′  and λ=ω′  can be obtained by 

setting 021 =ε=ε  in (70). We then get 

 ( ) ( ) ( ),22 λ∆=∆ ±λ± vvv zaa  (72) 

where 

 ( ) .
2

tan
2 1









κ

λ

π
=λ −

vz  (73) 

The plot in Figure 3 shows as λ  increases, ( )λvz  approaches to 1. 

To this end, we define the local quadrature squeezing of a pair of superposed 

cavity light beams in the interval between λ−=ω′  and λ=ω′  by 

 
( ) ( )

( )
.

2

22













∆

∆−∆
=

λ+

λ+λ+
λ±

v

v

a

aa
S  (74) 

Then combination of (70), (72), and (74) leads to 
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( )
,

4

1
1

2

1

2















λ

λ∆
−= ∑

=

++
λ±

i
v

ii

z

za
S  (75) 

where we have used the fact that 

 ( ) .4
2

. =∆ ±vaca  (76) 

On account of (70) and (72) together with (54), we see that 
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Figure 3. A plot of ( )λvz  [Eq. 73] versus λ  for .8.0=κ  

 

Figure 4. A plot of λ±S  [Eq. 77] versus λ  for 8.0=κ  and .4.01 =ε  

We immediately notice that the quadrature squeezing of the superposed light 

beams in a given frequency interval is not equal to that of the combined light in the 

entire frequency interval. We see from the plot in Figure 4 that the maximum local 

quadrature squeezing is %75  and occurs in the 01.0±  frequency interval. In 

addition, we observe that the local quadrature squeezing approaches to the global 
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quadrature squeezing as λ  increases. 

For ,21 ε=ε  we easily obtain 
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λ±S  (78) 

We immediately observe that the local quadrature squeezing of a pair of superposed 

light beams is exactly equal to that of the separate light beams. 

On the other hand, upon setting 02 =ε  in eq. (77), we see that 
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1

1

1

1













































κ

λ









ε+κ

λ








ε+κ

κ
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λ±S  (79) 

This is half of the local quadrature squeezing of one of the constituent light beams. 

5. The Entanglement Condition 

In this section, we seek to study the entanglement condition for a pair of 

superposed signal-signal light beams generated by one-mode subharmonic 

generators. Hence in order to show the entanglement of a pair of superposed cavity 

light beams, we apply the criterion presented in [12]. According to this criterion, a 

pair of superposed cavity light beams is said to be entangled if the sum of the 

variance of the two EPR-like operators ŝ  and t̂  satisfies the inequality 

 ( ) ( ) ,4
22 <∆+∆ ts  (80) 

where 

( ),ˆˆ
2

1
ˆ 21 ++ −= aas  (81) 

( ),ˆˆ
2

1ˆ
21 −− += aat  (82) 

with  

( ) ( ) ( ),ˆˆˆ 1
†
11 tatata +=+  (83) 
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( ) ( ( ) ( )),ˆˆˆ 1
†
11 tataita −=−  (84) 

( ) ( ) ( ),ˆˆˆ 2
†
22 tatata +=+  (85) 

and 

 ( ) ( ( ) ( )).ˆˆˆ 2
†
22 tataita −=−  (86) 

The steady-state variance of the operators ŝ  and t̂  can be expressed as 

 ( ) 222 ˆˆ sss −=∆  (87) 

and 

 ( ) .ˆˆ 222
ttt −=∆  (88) 

Thus employing (81), (83), and (85), one can readily obtains 

 ( ) [ ].ˆˆˆˆˆˆ2
†2
2

†2
12

†
21

†
1

2
aaaaaas ++++=∆  (89) 

Following the same procedure, we get 

 ( ) [ ].ˆˆˆˆˆˆ2
†2
2

†2
12

†
21

†
1

2
aaaaaat ++++=∆  (90) 

On account of (89) and (90) along with (52), we have 

 ( ) ( ) ( ) .
222

+∆=∆+∆ ats  (91) 

Moreover, in view of (91) and (54) at steady-state and threshold, the sum of the 

variance of the two EPR-like operators to be 

 ( ) ( ) .2
22 =∆+∆ ts  (92) 

On the basis of the criteria (80), we clearly see that a pair of superposed signal-signal 

light beams are entangled at steady-state and the entanglement turned out be 

observed in the squeezed photons. 

6. Conclusion 

We have analyzed the statistical and squeezing properties of a pair of superposed 

signal-signal light beams applying the density operator, the Q function, and a slightly 
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modified definition of the entanglement condition. Employing the density operator as 

well as the Q function, we have found that the mean photon number of a pair of 

superposed light beams to be the sum of the mean photon numbers of the constituent 

light beams. However, the photon number variance of a pair of superposed light 

beams does not happen to be the sum of the photon number variances of the separate 

light beams. We have also observed that a large part of the mean photon number is 

confined in a relatively small frequency interval. 

Furthermore, applying a slightly modified definition of the quadrature variance, 

we have obtained that the quadrature variance of a pair of superposed light beams to 

be the sum of the quadrature variances of the individual light beams and the 

superposed light beams are in a squeezed state and the squeezing occurs in the plus 

quadrature. Moreover, the global quadrature squeezing of a pair of superposed light 

beams turned out to be the average of the global quadrature squeezing of the 

component light beams. In light of this, the vacuum state indeed affects the 

quadrature variance and squeezing of a pair of superposed light beams. Besides, our 

analysis shows that at steady state and at threshold, the superposed light beams have 

a maximum squeezing of %50  below the vacuum state level in the entire frequency 

interval. 

On the other hand, we have observed that the local quadrature squeezing of a 

pair of superposed light beams is in general greater than the global quadrature 

squeezing and approaches to the global quadrature squeezing as λ  increases. We 

have noticed that the maximum local quadrature squeezing is %75  below the 

vacuum state level and occurs in the 01.0±  frequency interval. We have also clearly 

shown that a pair of superposed light beams are entangled at steady-state and the 

entanglement turned out be observed in the squeezed photons. 

To this end, we would like to mention that the predictions made in this paper 

concerning the local mean photon number and the local quadrature squeezing to be 

experimentally verified. 
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