
Fundamental Journal of Modern Physics 
ISSN: 2249-9768 
Volume 19, Issue 1, 2023, Pages 1-43 
This paper is available online at http://www.frdint.com/ 
Published online February 10, 2023 

:esphras and Keywords transport equations, turbulence, stochastics and deterministics, 

natural causality. 

Received March 31, 2021; Revised April 15, 2021; Accepted April 25, 2021 

 © 2023 Fundamental Research and Development International 

 

AEROSOL TRANSPORT BY TURBULENT 

CONTINUA 

ROLF WARNEMÜNDE 

Auf dem Sutan 14 

45239 ESSEN 

Germany 

e-mail: rolf.warnemuende@t-online.de 

Abstract 

The stochastic transport equations, derived rigorously under the 

condition of continuum fluctuations in the framework of an ensemble 

theory, both in differential and integral form, are then verified by 

establishing an unambiguous connection between this stochastics and 

the associated deterministics. 

1. Introduction 

Aerosol transport through turbulent continua is characterized by the 

fact that aerosols can only follow movements of fluid elements if they 

neither fall below nor exceed a certain size and weight. This is in contrast 

to molecular diffusion through matter, which is often successfully 

accomplished by known diffusion equations. This physical process is 
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fundamentally different from turbulent aerosol transport. In the former 

case, the diffusing molecules have an intrinsic motion between two 

interactions, while in the latter case, only predetermined paths are 

followed. 

These predetermined paths must correspond to a continuum system 

in which fluid elements follow the collective motions of many individual 

molecules moving locally apparently independently. I.e., fluid elements, 

which in their totality represent a fluctuating continuum, and their paths 

are abstract quantities and not points of matter. 

First, a fluid and turbulent fluid continuum is defined. According to 

this, a purely stochastic aerosol transport is excluded and a stochastic 

ensemble consideration is developed. 

The stochastic transport equations, derived rigorously under the 

condition of continuum fluctuations in the framework of an ensemble 

theory, both in differential and integral form, are then verified by 

establishing an unambiguous connection between this stochastics and the 

associated deterministics. 

This theory does not use any known models or hypothetical 

approaches to turbulence, but rather avoids such even in the awareness 

that turbulence is considered an unsolved problem. Thus, it starts first 

with a definition of the moving as well as a turbulent moving continuum. 

The described turbulent aerosol transport is based only on necessary 

conditions to corresponding continuous conditions of the aerosol 

movements, which are verified by deterministic equations of motion of 

turbulence derived from this in the most general way possible. 

The equations found in this way do not yet represent a complete 

system of equations, so that the discussion about the pros or cons of, e.g., 

the Navier-Stokes equations is still missing in this article. However, it 

will be thoroughly made up for in a follow-up article. 
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2. Definition of a Moved Fluid 

2.1. Definition of a fluid element 

At every time, space points ( )x
r

 are assigned to fluid elements in a 

unique correspondence. As this applies to every space point ( )x
r

 of the 

fluid field, the set of fluid elements is seen as a continuum. A Continuum 

of fluid element points (simply called fluid elements) is considered, where 

a fluid environment of non infinitesimal size is uniquely allocated to 

every fluid element point. Two infinitesimally neighboring fluid elements 

differ apart from their distance by their velocities and not quite identical 

material distributions of their neighborhoods. The neighborhoods of two 

nearby fluid elements overlap. A fluid element is shifted moving the 

material of its neighborhood. Though the material of such a fluid element 

may have changed marginally after an infinitesimal time interval ,εt  it 

can be identified principally by its prior material status. As every 

molecule possesses its own identity, there has to be at least an 

infinitesimally greater difference of material distribution to the 

neighborhoods of other fluid elements. 

The neighborhoods exchange material with neighborhoods of adjacent 

fluid elements and vary their thermodynamic state (a local 

thermodynamic state does not necessarily exist). Their size is not 

infinitesimal, because a local thermodynamic state (if physically existent) 

has to be detectable at least in thought experiment. The open 

neighborhoods have equally sized spherical shapes, generally. Near a 

solid border they are described by parts of spheres. Infinitesimally 

adjacent fluid elements possess overlapping neighborhoods. In an 

-ε surrounding they move in parallel. So one obtains a fluid, which is 

assumed to be a dense fluctuating point set, though there is no 

continuous matter distribution in Space-Time. That means it is possible 

to follow theoretically the history of every fluid element, though it has 
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exchanged a lot of its initial material altering its local thermodynamic 

state. 

The fluid is an abstract, dense set of fluctuating fluid elements, which 

do not generally correspond to material points. A continuum of moved 

fluid elements is considered each uniquely assigned to a neighborhood 

and a velocity. 

 .12

ε

−
=

ε tt
xx

v
rr

r
 (1) 

The fluid element first determined in space point 1x
r

 and -εt time later 

detected at 2x
r

 is identified having at time ε+ tt0  in 2x
r

 in comparison to 

all other points x
r

 the most similar material to that of 1x
r

 in .0t  In this 

context it is noted, that parts of the individual aerosols or molecules may 

be identified, too. The accuracies of the considered motion quantities are 

determined by -εt measurement processes. εt  characterising the 

accuracy. According to a process lim ,0→εt  the fluid elements move 

along trajectories that can a sufficient number of times be continuously 

differentiated forming a continuum as a whole. This continuum has a 

velocity vector field with ( ) 0≠v
r

rot  generally.1 Though ( )v
r

rot  has 

dimension [ ]sec1  in the laminar case it does not refer to a rotation. 

2.2. The orthogonality of ( )v
r

rot  and v
r

 is a consequence of the 

moved fluid continuum 

A fluid continuum is characterized by 

1. continuously differentiable velocities, 

2. parallel velocities in an -ε surrounding of a space point .x
r

 

                                                           
1In english literature ( ) 0≠v

r
curl is used but in turbulence the name rot  is more 

adapted as will be seen. 
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Considering without loss of generality a fluid movement of velocity 

( ) ( )0,0,0 xv=xv
rr

 in a space point 0x
r

 in cartesian coordinates, the 

velocity is described in an -ε neighborhood and parallel to the 

-x coordinate as follows: 
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The velocity components ( )xv
r

y  and ( )xv
r

z  osculate at the velocity 

( ) ( )0,0,0 xv=xv
rr

 spatially approaching (constant time ),0t  

( ) ( ) ,0,,,, 00000 =→ zyxzyx yy vv  

( ) ( ) .0,,,, 0000 =→ zyxzyx zx vv  

That means especially, that all the partial derivations by -y  or 

-z coordinate of 1. Order of ( )xv
r

y  and ( )xv
r

z  disappear in the point 

( ).,, 000 zyx  

,0limlim
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rr yz

z

yy

y
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( ).,, 0000 zyx=x
r

 (2) 

Applying the differential quotients in the ×∇
r

-operator expressed in 

cartesian coordinates gives for the fluid velocity 
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⇒  

The orthogonality of vv
rrr

⊥×∇  is a fundamental quality23 and 

a necessary condition for continuous fluid flow. 

In this orthogonality velocity vector fields differ from deformation 

vector fields. 

3. Definition of a Turbulent Fluid 

Trying to identify the state of movement of a fluid element in 

turbulent fluids by a velocity 
εt

v
r

 it should be recognized, that the state of 

movement is not yet determined, as the path in every space point (except 

in turning points) is uniquely adapted by an infinitesimal circle segment. 

In the infinitesimal neighborhood of a path point the velocity is identified 

by an instantaneous axis of rotation 
ε

ωt
r

 and a radius vector .
εt

r
r 4

 

 .
εεε

×ω= ttt rv
rrr

 (4) 

In a turbulently moved fluid the fluid elements move on curved 

trajectories in some space time points having turning points with 0=ω
εt

r
 

                                                           

2This relationship is not to be found in literature, although it is obvious and 
mathematically not very demanding.  
3This is one reason why the known millenium prize question does not lead to a solution of 
the turbulence problem. However the validity problem of the Navier-Stokes-equations is 
more fatal. So this is not a question for mathematics at first, but for physics.  
4That is why turbulence can not be uniquely identified by experiments of local velocity 
statistics.  
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and a curvature vector .0=
εt

b
r

 The considered vectorial motion 

quantities 
ε

ωt
r

 and 
εt

r
r

 are determined by -εt measurement processes, 

which are calculated later on by a limes process lim .0→εt  A fluid 

element originating from the point 0x
r

 crossing 1x
r

 after the time εt  

reaches 2x
r

 after a further time .εt  

.210 xxx
rrr

 → → εε tt  

A segment of a circle is clearly drawn through these 3 points with radius 

vector 
εt

r
r

 and velocity of rotation 
ε

ωt
r

 in ,1x
r

 unless a turning point is 

passed through. The local state of motion can not be described by velocity 

only, neither statistically nor deterministically.5 

Thus the fluid element in the space-time-point ( )t,x
r

 is identified 

principally by the contents of the matter of its neighborhood and state of 

movement expressed by 
ε

ωt
r

 and .
εt

r
r

 In that way defined fluid elements 

move on sufficiently often continuously differentiable trajectories. At each 

instant they lead to a new continuum of fluctuating fluid elements with 

several times continuously differentiable velocity field. The continuum of 

moving fluid elements represents the turbulent collective motion of a 

discontinuously spaced Matter. This is the result of the connection 

between deterministics and stochastics in the sense of an ensemble 

theory, which is presented in the following: 

The field of turbulence is described by the two vector fields 
ε

ωt
r

 and 

,
εt

b
r

 

 2
εεε

=
ttt rrb

rr
               -curvature vector field. (5) 

                                                           

5This statement contradicts that of Wilczek [7].  
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In addition, the results show that 

 ( ).
2
1

εε
=ω tt rot v

rr
 (6) 

( )v
r

rot  has the meaning of a local rotation in the frame of turbulence. An 

infinitesimal disturbance of stationary pipe flow leads to an change of the 

significance of ( ),v
r

rot  where ( )v
r

rot  does not correspond to a rotation 

initially. Whether starting motions of turbulence are suppressed, depends 

on an existent viscosity. These decelerations are generally weak. The 

beginning of turbulent movements avoid Newtonian friction as well as 

pressure gradients by means of hereto orthogonal motions. 

Vortex fields in turbulence (local rotation fields will be identified with 

vortex fields) and radius fields may have turning points along the paths 

of the fluid elements, which means 0=ω
r

 and .∞=r
r 6 In this case the 

velocities are to be calculated by interpolation or extrapolation from the 

neighborhood. The fluid elements are accompanied by a moving frame of 

,ω
r

 b
r

and v
r

 along their paths. 

Fluid elements, at a time are infinitesimally adjacent, have later 

moved away from each other and represent with new neighbors a new 

continuum. However, since also their material environments have 

changed, their past and future stay is to be determined only from the 

knowledge of the perfect spatiotemporal movement field. To calculate 

these fields, a system of equations is needed that couples other 

independent fields, such as the acceleration field. 

Independent Lagrangian turbulence calculations are not possible. 

4. Definition of Markov Processes with Natural Causality 

The probabilistic theory is related to random distributions of 

                                                           

6The temporal and spatial neighborhood of a turning point does not have such singular 
properties.  
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velocities π
r

 moving from ( )t,x
r

 to ( )., εε +π+ ttt
rr

x  These velocity 

distributions may get together of vortex and curvature vector fields 

.
2b

b
r

rr
×ω=π  

The transport from ( )εε −π′− ttt ,
rr

x  to ( )t,x
r

 is additionally controlled by 

transition probabilities 

( ),,, π′π=
εε

rrr
tWW tt ,x  

resulting in 

( ) ( ) ( ) .,,,,, π′π′−π′−π′π=π εε
π′ εεε ∫

rrrrrrrrr
r dtttftWtf ttt x,x,x  

Such a relation we call a Markov Process of natural causality. According 

to Sen [5] there is a so called Newtonian causality in nonrelativistic 

physics implying the possibility of unlimited velocities. However, 

Newtonian causality is restricted to Newtonian mechanics and stochastic 

processes of physics ending with diffusion equations when applied 

practically.7 This applies not for formulations of the general or linear 

Boltzmann Equation. In electrodynamics the velocity of light is the 

limiting velocity. The Newtonian causality proves to be a limiting case of 

non relativistic classical physics. Subsequently a causal Markov Process 

is continuously used or derived. Overarching master equations can not 

exist, physically. The transition probabilities 
εt

W  depend on a time 

quantity εt  related to continuum fluctuations of measurement accuracy 

according to vectorial motion quantities. For 0→εt  (exact motion 

quantities) the transition probability 
εt

W  degenerates to a -δ function. 

Simultaneous details of space and momentum are not possible in the 

                                                           

7This statement applies to the Fokker-Planck and Langevin equation. See, for example, 
Chandrasekhar [1].  
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context of quantum mechanics. The Schrödinger Equation for free 

“quantum particles” 

 
( )

( )t,
t

t,
i x

x rrh
r

h ψ∇
µ

−=
∂

ψ∂ 2
2

2
 (7) 

can be transformed into a linear homogenuous integral eqution [2] [3] 

 ( ) ( ) ( ) .dt,t,t,Git, xxxxx ′′′ψ′′=ψ ∫
rrrrr

;  (8) 

The Green function 

 ( ) ( ) xHxxx ′





 ′−−=′′

r

h

rrr
tt

i
t,t,G exp;  (9) 

is called Feynman kernel, too. 

In the case of the diffusion equation 

 
( )

( )t,D
t

t,
x

x rrr

ρ∇=
∂

ρ∂ 2  (10) 

an equivalent integral equation the Green function understood as 

transition probability from ( )t, ′′x
r

 to ( )t,x
r

 exists with 

 ( ) ( ) ( ) xxxxx ′′′ρ′′=ρ ∫ ′

rrrrr
dt,t,t,Gt,

V
;  (11) 

and the Green function 

 ( )
( )

( )
( ) .

4
1

; 42
3 2

ttDe
ttD

t,t,G
′−π

′−
−









′−π
=′′

xx

xx

rr

rr
 (12) 

Equations based on a “heat-kernel”-structure are not exact in classical 

physics (as well as the Newtonian mechanics). They are usually referred 

to as Markov processes. 

In quantum mechanics and quantum field theory natural causality is 

not possible because of the uncertainty principle. In Relativity there is 
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the maximal possible velocity, the velocity of light. 

4.1. Further remarks on the difference between diffusion 

transport and aerosol transport 

The diffusion process is a purely stochastic one, whereas the aerosol 

transport is due to a deterministic process. The sometimes in descriptions 

still assumed superimposed shear flow is supposed to shift the diffusion 

process spatially and temporally according to the shear flow. The 

assumed aerosols, however, move according to the turbulent continuum 

fluctuations. The developed stochastic of the aerosols takes place only in 

the sense of an ensemble consideration, which assumes arbitrarily many 

similar parallel existing continuum fluctuations in the thought 

experiment. From this then a distribution function ( )rtxff tt
rrr

,,, ω=
εε

 

arises for each space-time ( )., tx
r

 

However, even in the case of particle diffusion, the diffusion equation 

turns out to be less than a first approximation to a sometimes most 

accurate equation, the linear Boltzmann equation, without necessarily 

involving significant numerical deficits. These relationships are a truism 

[6] in neutron transport in nuclear reactor physics, but hardly known 

outside this field of physics, not even in nuclear physics, with which the 

author once started. 

5. Stochastic Transport of Aerosols by turbulent 

Continuum-Fluctuations 

5.1. Introduction 

The motion of passive aerosols by turbulent continuum fluctuations is 

examined. The aerosols are moved not affecting this field. Their 

trajectories correspond in every -ε neighborhood of a point to a circle 

segment passed with the velocity 

 ,
εεε

×ω= ttt r
rrr

v     .
εε

⊥ω tt r
rr

 (13) 
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The considered motion quantities 
ε

ωt
r

 and 
εt
r
r

 are determined in the 

thought experiment by finding the successive positions of a single aerosol 

moving from a point 0x
r

 after a time εt  to 1x
r

 and another time εt  to .2x
r

 

By these 3 points a circle segment is uniquely defined for the point 1x
r

 

with radius vector 
εt
r
r

 and a rotation speed .
ε

ωt
r

 

,
εεε

Θ⋅= ttt rr
rr

 

.
εεε

Ω⋅ω=ω ttt

rr
 (14) 

In the special case 0→ω
εt

r
 and +∞→r

r
 the velocity 

εt
v
r

 is revealed out 

of its neighborhood.8 The aerosol density distributions are received in a 

thought experiment by an unlimited number of deterministic ensemble-

systems. In every point ( )t,x
r

 a continuously differentiable aerosol 

density distribution of the motion quantities 
ε

ωt
r

 and 
εt
r
r

 is assigned in 

accordance with 

 ( ).,,, rtxff tt
rrr

ω=
εε

 (15) 

The with εt  indexed functions are automatically assumed to contain 

motion quantities of corresponding measurement accuracies. The 

indexing of the motion quantities can be omitted if the functions are 

indexed. After execution of a limiting process 

 ( ) ( ).,,,,,,lim
0

rtxfrtxft
t

rrrrrr
ω=ω

ε
ε →

 (16) 

f  and ( )r
rr

,ω  are understood according to an exact measuring process. 

Integrating the aerosol density distribution over the motion quantities 

one obtains expectation values of a aerosol density not conforming with 

the actual aerosol density .ρ  

                                                           

8Applying the deterministic theory this problem must be treated numerically.  
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( ) ( ) ( ).,,,
2 4 0 0

t,tddrddrtxft,t t xx
rrrrrrr

ε
π π

∞ ∞

ε ρ≠ΘΩωΘ⋅Ω⋅ω=ρ ∫ ∫ ∫ ∫ ε
 (17) 

A rigorously derived partial differential equation is obtained, which 

can be used to calculate the evolution of the spatiotemporal aerosol 

density distributions. The initially unbounded number of unknown 

coefficients is attributed to local time scaling. The abstractly formulated 

transition probabilities get concrete functional dependencies. 

5.2. The transport as Markov process with natural causality 

An aerosol at location x
r

 and time t  changing its velocity from 

( )rv
rrr
′ω′=′ ,  to ( )rv

rrr
,ω=  is given by the transition probability 

 ( )rrtxWW tt
rrrrr
′ω′ω=

εε
,;,;,  (18) 

with 

 ( ) .1,;,;,
0 0 4 2

=Θ′Ω′′ω′′ω′ω∫ ∫ ∫ ∫
∞ ∞

π π
ε

ddrddrrtxWt
rrrrr

 (19) 

⇒  

( ) ( )∫ ∫ ∫ ∫
∞ ∞

π π
′ω′ω=ω

εε 0 0 4 2
,,,,,,,, rrtxWrtxf tt
rrrrrrrr

  

( ) .,,, Θ′Ω′′ω′−′ω′⋅′×ω′− εεε
ddrddttrtrxft

rrrrr
 (20) 

Continuity is required, respectively, of all variables of the transition 

probability .
εt

W  The sequence of velocities ,
ε
′tv
r

 
εt

v
r

 means a motion from 

 ( )
εεεε
′×ω′−′ω′⋅′×ω′− εε tttt rttrtrx
rrrrrrr

,,,,     to    ( ).,,
εε
′×ω′ tt rtx
rrr

 (21) 

For the limiting process 0→εt  the transition probabilities 
εt

W  prove 

to be physical realizations of test functions of the distribution theory. 

 ( ).,;,lim
0

rrWt
t

rrrr
′ω′ω=

ε
ε →

 (22) 
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The passive scalar aerosols precisely reproduce the motions of the 

fluctuation field. For the aerosol density distribution ( )rtxft
rrr

,,, ω
ε

 the 

following separation approach is used without loss of generality: 

( )εε ′ω′⋅′×ω′−
ε

rttrxft
rrrrr

,,,   

( ) ( )Θ′Ω′⋅Θ′×Ω′−′ω′⋅′×ω′−= εεε εε

rrrrrrrrrr
,,,,, ttvxfrttrxG tt  (23) 

with 

( ) ,1,,,
0 0

=ωΘΩω∫ ∫
∞ ∞

ε
drdrtxGt

rrr
 

( ) ( ),,,,,,,
0 0

ΘΩ=ωωΘΩω∫ ∫
∞ ∞

ε

rrrrrrr
txvdrrdrtxGt  

( ) ( ),,,,,,, ΘΩϖ=ΘΩ
rrrrrrr

txtxv  (24) 

⇒  

( )ΘΩ⋅Θ×Ω− εε

rrrrr
,,, ttvxft  

( ) .,,,
0 0

drdrttrxft ωΘ⋅Ω⋅ω⋅×ω−= ε

∞ ∞

∫ ∫ ε

rrrrr
 (25) 

One obtains a transition probability 
εt

W  only depending on the directions 

by integrating 
εt

W  over the amounts ,ω′  ,r′  ,ω  .r  

( )Θ′Ω′ΘΩ
ε

rrrrr
,,,,, txWt  

( ) .,,,
0 0 0 0

drdrddrtttrxGW tt ω′ω′′ω′−⋅′×ω′−= εε

∞ ∞ ∞ ∞

∫ ∫ ∫ ∫ εε

rrrrr
 (26) 

The integration 

 ( ) drdω∫ ∫
∞ ∞

0 0
20  (27) 
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gives 

( )ΘΩ
ε

rrr
,,, txft  

( )rtttrxfW tt ′ω′−⋅′×ω′−= εε

∞ ∞ ∞ ∞

π π
εε∫ ∫ ∫ ∫ ∫ ∫

rrrrr
,,,

0 0 0 0 4 2
 

.. Θ′Ω′ω′ω′
rr

ddrddrdd   (28) 

( ) ( ) .,,,,,,
4 2

Θ′Ω′Θ′Ω′−⋅Θ′×Ω′′−=ΘΩ⇒ εε
π π

εεε ∫ ∫
rrrrrrrrrr

ddtttvxfWtxf ttt  (29) 

In the integrand 
εt
f  is developed around x

r
 and :t  

( )Θ′Ω′−∆− εε

rrrr
,,, ttxxft  

( ) ( ) .,,, 2












ε+′∇⋅Θ′×Ω′′+

∂

′∂
⋅ε⋅τ−Θ′Ω′=

ε
ε

ε
Ofv

t

f
txf t

t
Et

rrrrr
 (30) 

This leads to 

( ) Ettt txfddfW τ⋅ΘΩΘ′Ω′=−Θ′Ω′ ∫ ∫∫ ∫ π ππ π
εεε

rrrrrrr
,,,,,

4 24 2
 

( ) .2 Θ′Ω′











ε+′∇⋅Θ′×Ω′′+

∂

′∂
⋅

ε
ε

rrrr
ddOfv

t

f
t

t
 (31) 

As 

 ( )Θ′Ω′ΘΩδ=
ε

ε →

rrrr
,,,lim

0
t

t
W  (32) 

⇒  

 .lim 4 2

0
fv

t

f
fddfW

E

ttt

′∇⋅Θ×Ω+
∂

∂
=

τ⋅ε

−Θ′Ω′
εεε∫ ∫π π

→ε

rr

rr

 (33) 

Further on 
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E

ttt fddfW

τ⋅ε

−Θ′Ω′
εεε∫ ∫π π

→ε

rr

4 2

0
lim  (34) 

is called exchange-term. 

5.3. Calculation of the Exchange-Term 

Exchange term dependencies of scalar products Ω′⋅Ω
rr

 and Θ′⋅Θ
rr

 are 

taken into account instead of individually depending directions ,Ω
r

 Ω′
r

 

and ,Θ
r

 Θ′
r

 demanding the following relation 

E

ttt fddfW

τ⋅ε

−Θ′Ω′
εεε∫ ∫π π

→ε

rr

4 2

0
lim  

( )
.

,
~

lim 4 2

0 E

ttt fddfW

τ⋅ε

−Θ′Ω′Θ′⋅ΘΩ′⋅Ω

=
εεε∫ ∫π π

→ε

rrrrrr

 (35) 

The following transitions 

( ),,,,const. ΘΩ=→=τ
rrr

txtt EEE  

( ) ( )Θ′⋅ΘΩ′⋅Ω→Θ′Ω′ΘΩ
εε

rrrrrrrrr
,

~
,,,,, tt WtxW  (36) 

are regarded. Moreover, a separation of Ω′⋅Ω
rr

 and Θ′⋅Θ
rr

 is assumed: 

 ( ) ( ) ( ).,
~

Θ′⋅Θ⋅Ω′⋅Ω=Θ′⋅ΘΩ′⋅Ω
εεε

rrrrrrrr
ttt MVW  (37) 

Functions of the unit vectors Ω
r

 and Θ
r

 are presented by a complete 

orthogonal function system representing an extension of the spherical 

harmonics called turbulence functions. 

( ) ( ) ( )∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

ΘΩ=ΘΩ
εε

0

,,,,
l

l

lm k

lmklmktt Qtxftxf
rrrrrr
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( ) ( ),,
0

*∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

ΘΩ=
ε

l

l

lm k

lmklmkt Qtxf
rrr

 (38) 

( ) ( ) Θ′Ω′Θ′Ω′ΘΩ∫ ∫π π

rrrrrr
ddQQ lmklmk ,, *

2 4
 







′=′=

+

π
=

else0

,andfor
12

8 2
mmll

l  (39) 

with 

( ) ( ) ( ),, Θ′Ω=ΘΩ
rrrr

klmlmk HPQ  

( ) ( )




 =′π

=ΘΘΘ′
π∫ ,else0

,for2
*

2

kk
dHH kk

rrr
 

( ) .θ=Θ ik
k eH

r
 (40) 

The product Ω′⋅Ω
rr

 in the separated exchange function 
εt

V  is developed 

by spherical harmonics. 

( ) ( )( ) ( ) ( )∑ ∑∑
+∞

=

+=

−=

+∞

=

ΩΩ′=α=Ω⋅Ω′
εε

0

*

10

,cos
l

lmlm

lm

m

llt

l

t PPPVV
rrrr

 

( ) ( ).,lim
0

Ω′Ωδ=Ω⋅Ω′
ε

ε →

rrrr
t

t
V  (41) 

The product Θ′⋅Θ
rr

 in the separated exchange function 
εt

M  is developed 

by functions .kH  

( ) ( )∑
+∞

=

β=Θ⋅Θ′
εε

0

cos

k

ktt kMM
rr

 

( ) ( ) ( ) ( )[ ]∑
+∞

=

−− ΘΘ′+ΘΘ′=
ε

0

**

2
1

k

kkkkkt HHHHM
rrrr

 (42) 
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with 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ],
2
1

2
1

cos ** θ−θ′−θ−θ′
−− +=ΘΘ′+ΘΘ′=β ikik
kkkk eeHHHHk

rrrr
 

( ) ( ) ( ) ( ) ( ) ( )[ ]ΘΘ′+ΘΘ′=θ−θ′=β=Θ⋅Θ′ −−

rrrrrr *
11

*
112

1
coscos HHHH  

( ) ( )[ ],
2
1 θ−θ′−θ−θ′

+= ii ee  

( ) ( ),,lim
0

Θ′Θδ=Θ⋅Θ′
ε

ε →

rrrr
t

t
M  (43) 

⇒  

Θ′Ω′′
εε∫ ∫π π

rr
ddfW tt

~

4 2
 

( ) ( ) Θ′Ω′′Θ⋅Θ′⋅Ω⋅Ω′=
εεε∫ ∫π π

rrrrrr
ddfMV ttt

4 2
 

( ) ( )ΩΩ′













= ∑∑∫ ∫
+=

−=

+∞

=
π π

ε

rr *

0
4 2

lmlm

lm

lm

lt

l

PPV  

( ) ( ) ( ) ( )[ ]






ΘΘ′+ΘΘ′⋅ −−

+∞=

=
ε∑

rrrr **

0
2
1

kkkkkt

k

k

HHHHM  

( ) ( ) ( ) Θ′Ω′






Θ′Ω′′⋅

ε∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

rrrrr
ddHPtxf klmlmkt

l

l

lm k

**

0

,  

( ) ( ) ( ).,2
12

4 *

0

*

0

ΘπΩ
+

π
=

εεε ∑∑∑
+∞

=

+

−=

+∞

=

rrr
klmktkt

k

lm

l

lm

lt

l

HtxfMP
l

V  (44) 

Finally the exchange-term results in 

ε

−Θ′Ω′′
εεε∫ ∫π π

→ε

ttt fddfW
rr~

lim 4 2

0
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( ) ( ) ( )ΘΩ
ε







 −π

+

π

=
ε

εε

∑ ∑ ∑
∞+

=

+

−=

∞+

−∞=
→ε

rrr **

0
0

,
12

12
4

lim klmlmkt

ktlt

l

l

lm k

HPtxf

M
l

V

 

( ) ( ) ( ).,
0

ΘΩ= ∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

rrr
klmlmklk

l

l

lm k

HPtxfϒ  (45) 

With the exchange coefficients 

 
ε







 −π

+

π
εε

→ε

12
12

4

lim
0

ktlt

lk

M
l

V

ϒ  (46) 

the transport equation 

 ( ) ( ) ( )ΘΩ=∇⋅Θ×Ω+
∂

∂ ∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

rrrrr
klmlmklk

l

l

lm k
E

HPtxf
t

fv
t

f
,

1

0

ϒ  (47) 

is achieved. Further on it is shown that in lkϒ  the index k  may be 

skipped. 

5.4. Calculation of the Exchange-Coefficients lϒ  

Considering an overall closed volume range V  the aerosol number in 

the entire volume remains constant if no absorption is assumed. 

total number of aerosols .
4 2

constdddf =ΘΩ= ∫ ∫ ∫π πV

V

rr
 (48) 

⇒  

VV
VV

dddfv
t

f
dddf

dt

d
ΘΩ








∇⋅Θ×Ω+

∂

∂
=ΘΩ ∫ ∫ ∫∫ ∫ ∫ π ππ π

rrrrrr

4 24 2
  

000 =⋅= Vϒ  (49) 

and thus 

 .000 =ϒ  (50) 
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Getting an overview over the exchange function 
εt

M  the essential 

relations are presented again with the following equations: 

( ) ( )∑
+∞

=

β=Θ⋅Θ′
εε

0

cos

k

ktt kMM
rr

 

( ) ( ) ( ) ( )[ ],
2
1

0

**∑
+∞

=

−− ΘΘ′+ΘΘ′=
ε

k

kkkkkt HHHHM
rrrr

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ],
2
1

2
1

cos ** θ−θ′−θ−θ′
−− +=ΘΘ′+ΘΘ′=β ikik
kkkk eeHHHHk

rrrr
 

( ) ( )θ−θ′=β=Θ⋅Θ′ coscos
rr

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ],
2
1

2
1 *

11
*
11

θ−θ′−θ−θ′
−− +=ΘΘ′+ΘΘ′= ii eeHHHH

rrrr
 

( ) ( ),,lim
0

Θ′Θδ=Θ⋅Θ′
ε→ε

rrrr
tM  

( ) ( )




 =′π

=ΘΘΘ′′
π∫ .else0

,for2
*

2

kk
dHH kk

rrr
 

( ) ( )∑
+∞

=

β=Θ⋅Θ′
εε

0

cos
k

ktt kMM
rr

 only takes values essentially different from 

0  in an -ε neighborhood of 0,=β  such that ( ) ( )21cos ε−=β=Θ⋅Θ′ O
rr

 is 

sufficient. 

⇒  

( ) ββ=⋅π
εε ∫

π+

π−
dkMM tkt cos2  

( )( ) ( ).21 2
0 ε−⋅π=βε−=

εε∫
π+

π−
OMdOM tkt  (51) 

On the other hand 
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( ) Θ′Θ⋅Θ′
ε∫ π

rrr
dMt

2
 

( ) ( ) ( ) ( )[ ] Θ′ΘΘ′+ΘΘ′= −−

+∞=

=
π

ε∑∫
rrrrr

dHHHHM kkkkkt

k

k

**

0
22

1
 

12 0 =⋅π=
εt

M  (52) 

is valid. ⇒  

 .
2
1

lim 0
0 π

==
εε

ε →
tkt

t
MM  (53) 

The calculation of the exchange coefficients is not influenced by .
εt

M  

The -ϒ values are given by 

.
1

12
4

lim

1
12

8

lim
0

2

0 ε→ε→







 −

+

π

==










−

+

π

==
ε

ε

εε

ε t

l
V

t

l
MV

lt

t
l

ktlt

t
llk ϒϒϒ  (54) 

The transition probability is outlined by Legendre-polynomials 

respectively spherical harmonics: 

( ) ( )( ) ( ) ( ),cos *

00

Ω′Ω=ϑ=Ω′⋅Ω ∑∑∑
+=

−=

+∞

=

+∞

=
εεε

rrrr
lmlm

lm

lm

lt

l

llt

l

t PPVPVV  

( ) .cos µ=Ω′⋅Ω=ϑ
rr

 (55) 

On the other hand is 

( ) ( ),lim
0

Ω′⋅Ωδ=Ω′⋅Ω
ε

ε →

rrrr
t

t
V  

( ) ( ) ( ) .
4

12
4

12

0

*

0

l

l

lmlm

lm

lml

P
l

PP
l

π

+
=Ω′Ω

π

+
=Ω′⋅Ωδ ∑∑∑

+∞

=

+=

−=

+∞

=

rrrr
see (131). (56) 

( ) 0≥µ
εt

V  is only in the range [ ]1,1 ε−∈µ  essentially different from .0  
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So the Legendre polynomials are approximated by 

( ) ( ),1 2

1
ε+ε⋅

µ
−=µ O
d

dP
Pl ,1 µ−=ε  

( )
( )1.8see

2
1

1

+
=

µ

ll

d

dP
,,1 10 µ== PP  

⇒ ( ) ( )
( )

( ).
2

1 2
100 ε+

+
−−=µ O

ll
PPPPl  (57) 

Using 

 
12

21

1 +
δ=µ ′′

+

−∫ l
dPP llll  (58) 

Follows 

 ( )
( )

.
12

2
3

1
12 100

1

1
lttttlt V

l
V

ll
VllVdPV

εεεεε +
=

+
++−=µ∫

+

−
 (59) 

Furthermore is 

( ) 14 00
44

=π=Ω′=Ω′⋅Ω
εεε ∫∫ ππ
ttt VdVV

rrr
 

⇒  ,
4
1

0 π
=

εt
V  (60) 

as 
εt

V  for 0→εt  degenerates to a -δ function. That is why the ltV ε
 are 

expressed by 1εt
V  and the determination of 1εt

V  remains to be calculated. 

We set 

 .
1

3
4

lim
1

0
ζ=

ε







 −

π
ε

→ε

tV

 (61) 

Multiplying equation (59) with π2 leads to 

 
( ) ( )

,
2

1
3

4
2

1
44

12
4

100 εεεε

+π
+

+
π−π=

+

π
tttlt V

ll
V

ll
VV

l
 (62) 
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i.e., 

( )






 −

π+
=−

+

π
εε

1
3

4
2

1
1

12
4

1tlt V
ll

V
l

 

( )
( ) ( )22

2
1

ε+=ε+ζ
+

−= OO
ll

lϒ  (63) 

⇒  

 
( )

,
2

1
ζ

+
−=

ll
lϒ                 .const=ζ  (64) 

Now the equation of turbulent aerosol transport is written 

( )
( ) ( ) ( ).,

2
11

0

ΘΩ
+

=∇⋅Θ×Ω+
∂

∂ ∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

rrrrr
klmlmk

l

l

lm k
E

HPtxf
ll

t
fv

t

f
 (65) 

The coefficient 
Et

ζ
 replaced by .

1

Et
 A more complicated dependency of 

( )ΘΩ=
rrr

,,, txtE  possibly remains. Maybe, physically justified 

simplifications lead to practical solutions. 

The total derivative with respect to time gives 

( ) ( ) ( ) ( )ΘΩ=ΘΩ
∂

∂ ∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=

rrrrrr
klmlmk

l

l

lm k

HPtxf
dt

d
tx

t

f
,,,,

0

 

( ) ( ) ( ).,
1

1

ΘΩ⋅γ= ∑ ∑∑
+

−=

+∞

−∞=

+∞

=

rrr
klmlmk

l

lm k

l

l
E

HPtxf
t

 (66) 

The time behavior of the single modes are obtained by 

 ( ) ,lmk
E

l
lmk f

t
tf

dt

d γ
=             ( ) .exp~ 








⋅

γ
t

t
tf

E

l
lmk  (67) 

⇒  

The greater the order l  the more powerful is its temporal decay. The 
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function development can be terminated with the first order, since, as 

shown, such an approximation approaches asymptotically the exact 

solution with the distance against assumed sources and the time. 

5.5. Reconstruction of the transition probabilities 
εt

W  

The transition probability ,
~

210, →→εt
W  an aerosol changing its motion 

pair of directions ( )ΘΩ
rr

,  at the times ,0t  ,1t  2t  from ( )00 , ΘΩ
rr

 via 

( )11 , ΘΩ
rr

 to ( )22 , ΘΩ
rr

 

 

results out of the product of the single probabilities of the pairs of 

directions (vortex vector and radius vector direction of motion in a circle 

segment). The graphical presentation is meant symbolically because such 

a pair of directions does not compose to an overall direction. iΩ
r

 is always 

orthogonal to .iΘ
r

 A vectorial overall direction of iΩ
r

 and iΘ
r

 has no 

physical meaning in the 3 dimensional space.9 

 ( ) ( ).,
~

,
~~

2121
2

1010
2

210, Θ⋅ΘΩ⋅Ω⋅Θ⋅ΘΩ⋅Ω=
εεε →→

rrrrrrrr
ttt WWW  (68) 

The probability, that a aerosol changes its pair of directions within a time 

Ett ⋅ε=ε  from ( )00 , ΘΩ
rr

 to ( ),, 22 ΘΩ
rr

 is obtained by 

( )2020 ,
~

Θ⋅ΘΩ⋅Ω
ε

rrrr
tW  

( ) ( ) .,
~

,
~

112121
2

1010
2

2 4
ΘΩΘ⋅ΘΩ⋅Ω⋅Θ⋅ΘΩ⋅Ω=

εε∫ ∫π π

rrrrrrrrrr
ddWW tt  (69) 

                                                           

9 ,Ω
r

Θ
r

 would make a single direction vector in a 4-dimensional space. The 

longitudinal fluctuations in the 4-dimensional space should accord to turbulence 
in the 3-dimensional space.  
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The evolution coefficients of the transition probability are available 

for sufficiently small ε  

 
π

⋅
π

+







 ⋅ε

+≈
ε 2

1
4

12
2

1
~

2

l
W l

l
t

ϒ
 (70) 

and therefore 

( ) ( ) ( )0
*

1

0

1010
2

2
1

4
12

2
1,

~
ΩΩ

π
⋅

π

+







 ⋅ε

+≈Θ⋅ΘΩ⋅Ω ∑ ∑
+∞

=

+

−=
ε

rrrrrr
lm

l

l

lm

lm
l

t PP
l

W
ϒ

 

( ) ( ) ( ) ( )[ ],
2
1

0
*

10
*

1∑
+∞

−∞=

−− ΘΘ+ΘΘ⋅

k

kkkk HHHH
rrrr

 (71) 

respectively, 

( ) ∑ ∑
+∞

=

+

−=
π

⋅
π

+







 ⋅ε

+≈Θ⋅ΘΩ⋅Ω
ε

0

2121
2

2
1

4
12

2
1,

~

l

l

lm

lm
l

t P
l

W
ϒrrrr

 

( ) ( ) ( ) ( ) ( ) ( )[ ].
2
1

1
*

21
*

21
*

2 ∑
+∞

−∞=

−− ΘΘ+ΘΘ⋅ΩΩ

k

kkkklm HHHHP
rrrrrr

 (72) 

Integrating (69) one obtains 

( ) ∑ ∑
+∞

=

+

−=
π

⋅
π

+







 ⋅ε

+≈Θ⋅ΘΩ⋅Ω
ε

0

*
2020 2

1
4

12
2

1,
~

l

lm

l

lm

l
t P

l
W

ϒrrrr
 

( ) ( ) ( ) ( ) ( ) ( )[ ].
2
1

2
*

02
*

020 ∑
+∞

−∞=

−− ΘΘ+ΘΘ⋅ΩΩ

k

kkkklm HHHHP
rrrrrr

 (73) 

Using n  intermediate stages 
εt

W
~

 is expressed by an integral over the 

product of the single transition probabilities. 

( ) ( )21211010...10, ,
~

,
~~

Θ⋅ΘΩ⋅Ω⋅Θ⋅ΘΩ⋅Ω=
εεε →→

rrrrrrrr

n

t

n

tnt WWW  
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( ),,
~

... 11 nnnn

n

tW Θ⋅ΘΩ⋅Ω −−ε

rrrr
 (74) 

( )
n

t

n

tnnt WWW
εεε

⋅=Θ⋅ΘΩ⋅Ω ∫ ∫ ∫ ∫ ∫ ∫π π π π π π

~~
...,

~

2 4 2 4 2 4
00

rrrr
 

,...
~

... 1111 −− ΘΩΘΩ
ε nn

n

t ddddW
rrrr

 (75) 

( ) ( ) ( )Ω′Ω
π

⋅
π

+







 ⋅ε

+≈Θ′⋅ΘΩ′⋅Ω ∑ ∑
+∞

=

+

−=
∞→ε

rrrrrr
lm

l

lm

l

lm

l

n
t PP

l
W

0

*

2
1

4
12

2
1lim,

~ ϒ
 

( ) ( ) ( ) ( )[ ].
2
1 **∑

+∞

−∞=

−− ΘΘ′+ΘΘ′⋅

k

kkkk HHHH
rrrr

 (76) 

For ∞→n  arises 

 
ε⋅

∞→
=







 ⋅ε

+ le
n

l

n

ϒϒ

2
1lim  (77) 

and ⇒  

( ) ( ) ( )Ω′Ω⋅
π

⋅
π

+
=Θ′⋅ΘΩ′⋅Ω ∑∑

+

−=

ε⋅
+∞

=
ε

rrrrrr
lmlm

l

lml

t PP
l

eW l *

0
2
1

4
12

,
~ ϒ

 

( ) ( ) ( ) ( )[ ].
2
1 **∑

+∞

−∞=

−− ΘΘ′+ΘΘ′⋅

k

kkkk HHHH
rrrr

 (78) 

Choosing 
( )Ω

=ε ε rr
,, txt

t

E

 the exchange function 
εt

W
~

 may be understood 

in the dependencies 

 ( )Θ′⋅ΘΩ′⋅Ω=
εε

rrrrr
,,,

~~
txWW tt  (79) 

and 
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 ( ) ( )Θ′⋅ΘΩ′⋅Ω≈Θ′ΘΩ′Ω
εε

rrrrrrrrrr
,,,

~
,,,,, txWtxW tt  (80) 

is given, too. ⇒  

( ) ( )Θ′Ω′ΘΩ=ΘΩ
εε ∫ ∫π π

rrrrrrrr
,,,,,

~
,,,

2 4
txWtxf tt  

( ) ,,,, Θ′Ω′−Θ′Ω′Θ′×Ω′′⋅−× εεε

rrrrrrr
ddttvtxft  

( ) ( ) ( ).,,,,,,,,, txrtxtxvv Θ′Ω′′⋅Θ′Ω′ω′=Θ′Ω′′=′
rrrrrrrrr

 (81) 

6. Verification that the Stochastic Aerosol Motions 

occur through turbulently moving Continua 

6.1. The relationship between stochastic aerosol transport and 

known fluid dynamics 

6.1.1. Introduction 

In this last section, it will be shown that the stochastic aerosol 

transport in terms of an ensemble theory can indeed be assigned to 

turbulent continua characterized by fluid elements 

.
εεε

×ω= ttt rv
rrr

 

Separation of vectors ω
r

 and r
r

 in magnitude and direction corresponding 

to (14) is not needed now. As with aerosol transport, the term 

 ( )rtxF
t

frddfW
r

ttt

t

e rrr

rr
r r

,,,lim
0

ω=

′−′ω′′

ε

ω

→

∫ ∫ εε

ε

 (82) 

turns out to be the key to the problem. F  is the exchange term of r
r

 and 

ω
r

 not integrated out with respect to vector amounts as in (34). 

Turbulently moved one phase fluids are examined considering 

statistical deliberations and its deterministic counterparts. That a linking 

of deterministic and stochastic theory may be available and further more 
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that out of this connection additionally important (sometimes otherwise 

not known) relations arise for deterministic formulations, is shown in the 

following. 

6.1.2. The Transition: Stochastic Theory →  Deterministic Theory 

Every space-time-point ( )tx,
r

 is assigned a continuously 

differentiable fluid element distribution over the motion amounts 
ε

ωt
r

 and 

εt
r
r

 according to 

 ( ).,,, rtxff tt
rrr

ω=
εε

 (83) 

For indexed functions with ,εt  it is automatically assumed that the 

dependent motion quantities ( )r
rr

,ω  are assigned to a -εt measurement 

accuracy. The indexing of the motion quantities may be omitted in the 

functions if the functions are accordingly indexed. 

After an execution of a lim 0→εt  process, such as 

 ( ) ( )rtxfrtxft
t

rrrrrr
,,,,,,lim

0
ω=ω

ε
ε →

 (84) 

f  and ( )r
rr

,ω  are understood as results of an exact measuring process. 

The change of motion quantities in point ( )tx,
r

 

( ( ) ( )) ( ( ) ( ))txrtxttxxrttxx tttt ,,,,,,
rrrrrrrrrr

εεεε
ω→−∆−′−∆−ω′ εε  

is controlled by the transition probability density 

( )rrtxWW tt ′ω′ω=
εε

rrrrr
,,,,, 10 with 

( ),,,,lim
0

rrWt
t

′ω′ωδ=
ε

ε →

rrrr
 

                                                           
10The test functions otherwise used in distribution theory have an immediate physical 
meaning in this context with the formulation of the transition probability density. 
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( ) ( )rrtxWrtxf t

r

t ′ω′ω=ω
εε ∫ ∫

ω

rrrrrrrr

r r

,,,,,,,,  

( ) ,,,, rddrttxxft ′ω′′ω′−∆−⋅ εε

rrrrrr
 

.rtx ′×ω′⋅=∆ ε
rrr

 (85) 

These equations characterize stochastic turbulence of the continuum 

in the frame of an ensemble theory and represent a Markov Process with 

natural causality. (This is a definition of the author.) 

εt
f is developed in (85) until the 1st order around ( ) ⇒tx,

r
 

( ) ( )rtxfrttxxf tt ′ω′=′ω′−∆−
εε ε

rrrrrrr
,,,,,,  

 ( ) ( )2,,, εε +′ω′∇⋅∆−⋅
∂

′∂
−

ε

ε tOrtxfxt
t

f
t

t rrrrr
 (86) 

with ( )rtxff tt ′ω′=′
εε

rrr
,,,  and one obtains 

( )2
ε

ω

+′ω′







′∇⋅′×ω′+

∂

′∂

ε

ε∫ ∫ tOrddfr
t

f
t

t

r

rrrrr

r r

.
ε

ω

εεε
−′ω′′

=

∫ ∫
t

frddfW ttt

r

rr

r r
 (87) 

 

0
lim

→εt
 applied to (87) leads to 

 .lim
0 ε

ω

→

εεε

ε

−′ω′′

=∇⋅×ω+
∂

∂
∫ ∫

t

frddfW

fr
t

f
ttt

r

t

rr

rrr r r
 (88) 

The right side must contain the characteristics of the turbulent fluid. 

 ( ).,,,lim
0

rtxF
t

frddfW ttt

r

t

rrr

rr

r r
ω

−′ω′′

ε

ω

→

εεε

ε

∫ ∫
 (89) 
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F  has to be chosen such, that the deterministic vortex equations 

result under the influence of the assumed acceleration field. Thus one 

obtains 

 ( ).,,, rtxFfr
t

f rrrrrr
ω=∇⋅×ω+

∂

∂
 (90) 

If we restrict ourselves to a single system of the ensemble with the 

identifier ν  in a space-time point ( ),, tx
r

 which has exactly these 

movement sizes ( )νω ;, tx
rr

 and ( )ν;, txr
rr  in this system, then the distribution 

function f  degenerates to a -δ function with respect to these movement 

sizes. ( )νω ;, tx
rr

 and ( )ν;, txr
rr  are not vector functions but constant vectors in 

( ),, tx
r

 whereas ( )tx,
rr

ω  and ( )txr ,
rr

 represent spatiotemporal fields in 

dependence of ( )., tx
r

 

 ( ) ( ( ) ( ) )rrrtxf txtx
rrrrrrr rr ,;,,,, ;,;, ωωδ→ω νν  (91) 

and 

( )
( )

( )
( )( ) ( ( ) ( ) ),,;,

2
1

,,, ;,;,;,
;,

2
;,

rrqrtxF txtxtx
tx

tx rrrrrr
r

rrr rrr
r

r

ωωδ











×∇⋅

ω

ω
→ω ννν

ν

ν
 (92) 

as will be shown in the following. 

The equation for stochastic propagation in terms of an ensemble 

theory thus degenerates to the following equation, from now on called 

key equation. 

 ( ) ( )
( )

( )
( )( ) .0

2
1

, ;,
;,

2

;,
;,;, =δ


























×∇⋅

ω

ω
−∇⋅ω+

∂

∂
ν

ν

ν
νν tx

tx

tx
txtx qr

t
r

r

r
rr rr

r
rrr

 (93) 

For this -δ function applies 

( ( ) ( ) ) ,1,;, ;,;, =ωωωδ νν
ω∫ ∫ rddrr txtx

r

rrrrrr rr
r r  
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( ( ) ( ) ) ( ),,;, ;,;,;, ννν
ω

ω=ωωωωδ∫ ∫ txtxtx
r

rddrr rrr
r r

rrrrrrrr
 

( ( ) ( ) ) ( ),,;, ;,;,;, ννν
ω

=ωωωδ∫ ∫ txtxtx
r

rrddrrr rrr
r r

rrrrrrrr
 

( ( ) ( ) ) ( ) ( ),,;, ;,;,
22

;,;, νννν
ω

ω=ωωωωδ∫ ∫ txtxtxtx
r

rrddrrr rrrr
r r

rrrrrrrrrr
 

( ( ) ( ) )
( )

( )
( )( ) rddqrr tx

tx

tx
txtx

r

rrrr
r

rrrr
r

r

r
rr

r r ω











×∇⋅

ω

ω
ωωδ ν

ν

ν
νν

ω∫ ∫ ;,
;,

2
;,

;,;, 2
1

,;,  

( )

( )
( )( ) .

2
1

;,
;,

2
;,












×∇⋅

ω

ω
= ν

ν

ν
tx

tx

tx
q r

r

r rr
r

 (94) 

Definition of the operator [ ]...Ξ  

From the vector ( )ν;, tx
rA  respectively the scalar function value ( )ν;, txf

r  

which is defined in the space-time point ( )tx,
r

 of the system ν  a vector 

function or a scalar function is obtained by the operator ,Ξ  if a 

corresponding field exists around the point ( )tx,
r

 

 ( )[ ] ( ),,;, txtx
rr AA =Ξ ν                    ( )[ ] ( ).,;, txff tx

rr =Ξ ν  (95) 

The Operator [ ]...Ξ  brings this functionality to “life”. 

Accordingly the following relationships are noted: 

( )[ ] ( ),,;, txtx
rrr r ω=ωΞ ν  

( )[ ] ( ),,;, txrr tx
rrr r =Ξ ν  

( ) ( )[ ] ( ) ( ),,,2
;,;,

2 txrtxr txtx
rrrrrr rr ω=ωΞ νν  

( )

( )
( )( )

( )

( )
( ).,

,

,
2
1

2
1

2;,
;,

2
;,

txq
tx

tx
q tx

tx

tx rrr
rr

rr
rr

r

r
r

r

×∇⋅
ω

ω
=


























×∇⋅

ω

ω
Ξ ν

ν

ν
 (96) 
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6.1.3. Deterministic Equations of Turbulence 

From the general momentum equation 

 ( ) ,qvv
t

v rrrr
r

=∇⋅+
∂

∂
 (97) 

the vortex equation11 may be developed using the -×∇
r

operator 

 ( ) .0
2
1

=×∇−ω××∇−ω
∂

∂
qv

t

rrrrrr
 (98) 

The relations between deterministic and stochastic description is 

established when the known deterministic vortex equation can be 

reconstructed from an associated stochastic equation of the ensemble 

theory. In the following the method is presented developing the dual pair 

of deterministic vector equations from the key equation (93). 

( ) ( )
( )

( )
( )( ) .0

2
1

;,
;,

2

;,
;,;, =δ


























×∇⋅

ω

ω
−∇⋅×ω+

∂

∂
ν

ν

ν
νν tx

tx

tx
txtx qr

t
r

r

r
rr rr

r
rrr

 

In this situation the vectors may be pushed before and after the 

differential operators. The Term 

 
( )

( )
( )( ) δ












×∇⋅

ω

ω
ν

ν

ν
;,

;,
2

;,
tx

tx

tx
q r

r

r rr
r

 (99) 

guarantees the finding of equation (98) and its dual one. It is 

 rv
rrr

⊥ω⊥  (100) 

and setting 

 ω×=
rrr

va  (101) 

this results in 

                                                           

11By vortex is in this paper always the swirl v
rr

×∇=ω
2
1

 meant. 
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 .ar
rr

 (102) 

Such a
r

 and r
r

 are linked as follows12 

 .
2ω

=
a

r

r
r

 (103) 

⇒  

with ( ( ) ( ) ).,;, ;,;, rr txtx
rrrr rr ωωδ=δ νν  

( ) ( ) ( ) ( ) δ∇⋅ω×−=δ∇⋅×ω νννν

rrrrrr rrrr
;,;,;,;, txtxtxtx rr  

( ) ( )
( )

( )
( ) .;,

;,
2

;,
;,;, δ×∇⋅

ω

ω
−=δ×∇⋅ω= ν

ν

ν
νν tx

tx

tx
txtx ar r

r

r
rr rr

r
rrr

 

Inserting in (93) gives 

( ) ( )

( )

( )

( )
( ( ) )δ×∇⋅

ω

ω
−














δ

ω

ω⋅ω

∂

∂
ν

ν

ν

ν

νν
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;,
2

;,

;,
2

;,;,
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txtx
a

t
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r

rr rr
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( )

( )
( )( ) 0

2
1

;,
;,

2

;,
=δ












×∇⋅

ω

ω
− ν

ν

ν
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tx

tx
q r

r

r rr
r

  

( )

( )
( ( ) ) ( ( ) ) ( )( )[ ] 0

2
1

;,;,;,
;,

2

;,
=






 δ×∇⋅−δ×∇−δω

∂

∂
⋅

ω

ω
⇒ ννν

ν

ν
txtxtx

tx

tx
qa

t
rrr

r

r rrrrr
r

 

( ( ) ) ( ( ) ) ( )( )[ ] 0
2
1

;,;,;, =δ×∇⋅−δ×∇−δω
∂

∂
⇒ ννν txtxtx qa

t
rrr

rrrrr
 (104) 

and 

( ( ) ) ( ( ) ) ( )( )[ ] 0
2
1

;,;,;, =ω



 δ×∇−



 δ×∇−δω
∂

∂
Ξ ννν

ω∫ ∫ rddqa
t txtxtx

r

rrrrrrr
rrr

r r (105) 

is obtained and since integration and differentiation are interchangeable 

                                                           
12Symbols as var ,,,ω  etc. always mean amounts of the corresponding vectors.  
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in order, it follows that 

 ( )[ ] ( )[ ] ( )[ ] .0
2
1

;,;,;, =Ξ×∇−Ξ×∇−ωΞ
∂

∂
ννν txtxtx qa

t
rrr

rrrrr
 (106) 

Now we have the first of the dual turbulence equations 

 ,0
2
1

=×∇−×∇−ω
∂

∂
qa

t

vrrrr
 (107) 

accordingly 

( ) .0
2
1

=×∇−ω××∇−ω
∂

∂
qv

t

vrrrrr
 

Hereby the connection of stochastics and deterministics is achieved. 

From the key-equation above a second equation, the dual one, may be 

derived. 

Back to the initial equation (93) 
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Simple conversions give 
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 (108) 
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Using the curvature vector field of the fluid trajectories 
2r

r
b

vr
=  the 

equation is written 

( ( ) ) ( ( ) ) ( )
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r
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 (109) 

and applying the operators Ξ arises 

( ( ) ) ( ( ) )
 δω×∇+δ
∂

∂
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b
t

rr
v r
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respectively 
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Thus, the second of the dual turbulence equations is obtained 
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Overall, this results in the dual system of equations 
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The term 
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leads to removable singularities in space-time-points ( )tx,
r

 if 0=ω
r

 and 

0=b
r

 occur in the fluid-element trajectories. 

In this case the whole term is calculated from its surroundings. The 

same shall apply for the calculation of the velocity .v
r

 

These matters are to be discussed in connection with a statement of a 

complete system of equations of deterministic turbulence, which will be 

done in another paper. 

7. Summary and Outlook 

Aerosol motions in a turbulently moving continuum are studied 

assuming that they accurately describe the trajectories of individual fluid 

elements due to their size and weight. These movements, which are 

actually deterministic, were considered stochastically in the sense of an 

ensemble theory. After the consequent derivation of the aerosol transport 

equations, two coefficients ( )ΘΩ
rrr

,,, txv  and ( ),,,, ΘΩ
rrr

txtE  which are still 

very complicated in their dependencies, remain. Simplifying model 

assumptions can lead to correspondingly simplified coefficients. 

Furthermore, the function development can be terminated with the first 

order, since, as shown, such an approximation approaches asymptotically 

the exact solution with the distance against assumed sources and the 

time. 
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( ) ( )ΘΩ=ΘΩ=
rrrrrr

,,,,,,, txtttxvv EE  

c  
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( ) ,,,, Θ′Ω′−Θ′Ω′Θ′×Ω⋅− εεε
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( )
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ζ
+

−=
ll

lϒ      .const=ζ  

The integral form of the transport equation with its explicitly 

formulated transition probability indicates the possibility of using Monte 

Carlo methods for its numerical evaluation. 

It is probably relatively difficult to experimentally confirm the 

relationships presented. Therefore, the connection between such a 

stochastics in the sense of an ensemble theory and a deterministic fluid 

dynamics is established. 

( ) ( ) ( ) ,,,,,,,,,,,,
4 2

rddttrtrxfrrtxWtxf ttt ′ω′−′ω′⋅′×ω′−′ω′ω=ΘΩ εε
π π
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⊥ω⊥  (114) 

The result is a dual pair of deterministic equations of turbulence. In 

this respect, the desired goal is achieved. However, this pair of equations 

is not yet complete. The completion happens in a further paper, where 
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then the whole system of equations represents a geometrodynamics of 

turbulence. I.e. the whole system of equations consists of vector fields of 

velocities, vortex rotations, their curvature vector fields and non-

conservative accelerations. 

8. Appendix 

8.1. Legendre-Polynomials 

The Legendre-polynomials are defined within the interval [ ]1,1 +−  by 

 ( ) ,1
!2

1 2 n

n

n

nn x
dx

d

n
P −=     .Nn ∈  (115) 

They represent a complete orthogonal function system with 

 ( ) ( ) ( ) [ ]1,1
.else0

,for
12

21

1
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




 =
+=∫

+

−
xf

nm
mdxxPxP mn  (116) 

Every continuously differentiable function ( )xf  defined within [ ]1,1 +−  

can be developed by Legendre-polynomials according to 

 ( ) ( ).
0

xPfxf ll

l

∑
∞

=

=  (117) 

The lf  are the evolution coefficients. A presentation of the -δ function by 

Legendre-polynomials is obtained by 

 ( ) ( ) ( ).
2

12
,

0

xPxP
m

xx ll

l

′
+

=′δ ∑
∞

=

 (118) 

Important recurrence equations are 

( ) ( ) ( ) ( ),121 11 xnPxxPnPn nnn −+ −+=+   

( ) ( ) ( ) ( ) ...,,2,1,0,11 =+=′−′ + nxPnxPxxP nnn   
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( ) ( ) ( ) ( ).1 1
2 xnxPxnPxPx nnn −=′− −  (119) 

An integral representation of the Legendre-polynomials is obtained by 

 ( ) ( ( )) .cos1
1 2

0
ϕϕ−+

π
= ∫

π
dxxxP

n
n  (120) 

Owing to ( ) ( ) ( ) ,1cossincoscos12 ≤θθ+θ=θ−+ ixx  

 ( ) 1≤xPn  (121) 

follows. These polynomials have their maximum for ,1=x  particularly 

( ) .11 =nP  (122) 

( ) ( )
2

1
1

+
=

ll

dx

xdPl  (123) 

is proved by complete induction. 

Proof . 

1. ( ) .010 =′P  

Assumption: 

2. ( )
( )

2
1

1
+

=′
nn

Pn  

⇒  

3. ( )
( )( )

2
12

11
++

=′ +
nn

Pn  wegen (119) ( ) ( ) ( ) ( )11111 nnn PnPP +=′−′ +  

q.e.d. 

8.2. Spherical Harmonics 

The Spherical harmonics [[6] page 224] represent a complete 

orthogonal, complex function system on the spherical surface 
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( ) ( )( ) ( )
( )

( )

( ) ml

lml

l

m
im

lm
d

d

ml

ml

l
eP

+

+
ϕ

ϑ

−ϑ








+

−
⋅

ϑ−
=Ω

cos

1cos
!
!

2!

sin 2
2
1

r
 

( )( ) ( )
( )

( )

( ) ml

lml

l

m
im

d

d

ml

ml

l
e

−

−−
ϕ

ϑ

−ϑ








−

+
⋅

ϑ
=

cos

1cos
!
!

2!

sin 2
2
1

 (124) 

with 

 ( ) ( ) ( )Ω−=Ω−

rr *
, lm

m
ml PP  (125) 

and 

 ( ) ( ) .
12

4*

4 +

π
δδ=ΩΩΩ ′′′′

π∫ l
PPd mmlllmml

rrr
 (126) 

All continuously differentiable functions on the spherical surface 

( ) ( )φθ=Ω ,ff  can be developed according to 

 ( ) ( ) ( )Ω=Ω=Ω ∑ ∑∑ ∑
∞

=

+=

−=

∞

=

+=

−=

rrr *

00

lmlm

l

lm

lm

lmlm

l

lm

lm

PfPff  (127) 

the lmf  representing the evolution coefficients. The ( )Ω
r*

lmP  being 

complex to ( ).Ω
r

lmP  ( )Ω
r

f  can be alternatively considered. 

The complex version of spherical harmonics is chosen because it is 

successfully used in quantum mechanics as well as in nuclear reactor 

physics. The formulations appear more compact in this way. 

The spherical harmonics for 1,0=l  are 

,1*
0000 == PP   

( ) ( ) ( ),sin2,sin2 2
1

*
1,1

2
1

1,1 ϕ=ϕ=Ω ϕ−−

−
ϕ−−

−
ii ePeP

r
  

( ) ( ) ( ) ( ),cos 1
*

0,10,1 Ω=ϕ=Ω=Ω
rrr

PPP   
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( ) ( ),sin2 2
1

1,1 ϕ−=Ω ϕ− ieP
r

 ( ) ( ).sin2 2
1

*
1,1 ϕ−=Ω ϕ−− ieP
r

 (128) 

The connection of spherical harmonics and Legendre-polynomials is 

obtained by 

 .*
00 lll PPP ==  (129) 

Furthermore the addition theorem 

 ( )( ) ( ) ( ),cos * ΩΩ′=ϕ ∑
+=

−=

rr
lmlm

lm

lm

l PPP         ( ) .cos Ω⋅Ω′=ϕ
rr

 (130) 

The -δ function depending on the spherical harmonics may be stated 

by 

( ) ( ) ( ) ( ).
4

12
4

12
,

0

*

10

Ω′⋅Ω
π

+
=Ω′Ω

π

+
=Ω′Ωδ ∑∑∑

∞

=

+=

−=

∞

=

rrrrrr
l

l

lmlm

lm

ml

P
l

PP
l

 (131) 

8.3. Turbulence-Functions 

Functions of the unit direction vectors Θ⊥Ω
rr

 are represented by a 

complete orthogonal function system meaning an extension of the 

spherical harmonics. We call them turbulence functions. 

( ) ( ) ( ),, ΘΩ=ΘΩ
rrrr

klmlmk HPQ  

( )Ω
r

lmP        spherical harmonics, 

( ) ( )


 =′π

=ΘΘΘ′
π∫ ,else0

,for2*

2

kk
dHH kk

rrr
 

( ) ,θ=Θ ik
k eH

r
 (132) 

( ) Ω⋅Ω′=ϕ
rr

cos  (133) 

with 
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( ) ( ) Θ′Ω′Θ′Ω′ΘΩ∫ ∫π π

rrrrrr
ddQQ lmklmk ,, *

2 4
 







′=′=′=

=

π
=

.else0

,;;for
12

8 2
kkmmll

l  (134) 

Such, suitable distribution functions are described by 

( ) ( ) ( ),,,,,,

0

ΘΩ=ΘΩ ∑ ∑ ∑
+∞

=

+

−=

+∞

−∞=
ε

rrrrrr
lmklmk

l

l

lm k

t Qtxftxf   

( ) ( ) ( ) ( ).,,,,

0

ΘΩ=ΘΩ ∑∑ ∑
+∞

−∞=

+∞

=

+

−=
ε

rrrrrr
klmk

k

lm

l

l

lm

t HtxfPtxf  (135) 

Die -δ function depending on the turbulence functions is expressed 

( )Θ′ΘΩ′Ωδ
rrrr

,;,  

( ) ( ) ( ) ( )Ω′Θ
π

Ω′Ω
π

+
= ∑∑∑

+∞

−∞=

+=

−=

∞

=

rrrr **

0
2
1

4
12

kk

k

lmlm

lm

lml

HHPP
l

 (136) 

and such 

( ) ( ) ( ) ( )( ).exp12
8

1
,;,

0
2

Θ′−ΘΩ′⋅Ω+
π

=Θ′ΘΩ′Ωδ ∑∑
+∞

−∞=

∞

=

rrrrrrrr
ikPl

k

l

l

 (137) 
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