A NON-UNITAL ALGEBRA HAS UUNP IFF ITS UNITIZATION HAS UUNP

M. EL AZHARI

Ecole Normale Supérieure
Avenue Oued Akreuch
Takaddoum, BP 5118, Rabat
Morocco
e-mail: mohammed.elazhari@yahoo.fr

Abstract

Let A be a non-unital Banach algebra, S. J. Bhatt and H. V. Dedania showed that A has the unique uniform norm property (UUNP) if and only if its unitization has UUNP. Here we prove this result for any non-unital algebra.

1. Preliminaries

Let A be a non-unital algebra and let $A_e = \{a + \lambda e : a \in A, \lambda \in \mathbb{C}\}$ be the unitization of A with the identity denoted by e. For an algebra norm $\| \|$ on A, define $\|a + \lambda e\|_{op} = \sup\{(a + \lambda e)b : b \in A, \|b\| \leq 1\}$ and $\|a + \lambda e\| = \|a\| + |\lambda|$ for all $a + \lambda e \in A_e$. $\| \|$ is an algebra norm on A_e. An algebra norm $\| \|$ on A is called regular if $\| \|_{op} = \| \|_1$ on A. A uniform norm $\| \|$ on A is an algebra norm satisfying the square property $\|a^2\| = \|a\|^2$ for all...
a ∈ A; and in this case, ∥∥ is regular and \(\| \|_{op} \) is a uniform norm on \(A_e \). An algebra has the unique uniform norm property (UUNP) if it admits exactly one uniform norm.

2. The Result

Theorem. A non-unital algebra \(A \) has UUNP if and only if its unitization \(A_e \) has UUNP.

Proof. Let \(\| \| \) and \(\| \|_1 \) be two uniform norms on \(A_e \), then \(\| \| = \| \|_1 \) on \(A \) since \(A \) has UUNP, and so \(\| \|_{op} = \| \|_{op} \) on \(A_e \). By [3, Corollary 2.2(1)] and since two equivalent uniform norms are identical, it follows that \((\| \| = \| \|_{op} \) or \(\| \| \equiv \| \|_1 \)) and \((\| \| = \| \|_{op} = \| \|_{op} \) or \(\| \| \equiv \| \|_1 = \| \|_1 \))

equivalently, at least one of the following holds:

(i) \(\| \| = \| \|_{op} \) and \(\| \| \equiv \| \|_{op} = \| \|_{op} \);

(ii) \(\| \| = \| \|_{op} \) and \(\| \| \equiv \| \|_1 = \| \|_1 \);

(iii) \(\| \| \equiv \| \|_1 \) and \(\| \| \equiv \| \|_{op} = \| \|_{op} \);

(iv) \(\| \| \equiv \| \|_1 \) and \(\| \| \equiv \| \|_1 = \| \|_1 \).

If either (i) or (iv) is satisfied, then \(\| \| = \| \|_1 \). By noting that (ii) and (iii) are similar by interchanging the roles of \(\| \| \) and \(\| \|_1 \), it is enough to assume (ii). Let \((c(A), \| \|^-)\) be the completion of \((A, \| \|)\), we distinguish two cases:

1. \(c(A) \) has not an identity:

\(\| \|^- \) is regular since it is uniform. By [1, Corollary 2], \(\| \|^-_{op} \leq \| \|^- \leq 3 \| \|_{op} \) on \(c(A)_e \) (unitization of \(c(A) \)). Let \(a + \lambda e \in A_e \subset c(A)_e \), \(\| a + \lambda e \|^- = \| a \|^- + |\lambda| = \| e \| + |\lambda| = \| a + \lambda e \|_1 \) and \(\| a + \lambda e \|^-_{op} = \operatorname{sup}\{\| (a + \lambda e)b \|^- : b \in c(A), \| b \|^- \leq 1 \} \)

\(= \operatorname{sup}\{\| (a + \lambda e)b \| : b \in A, \| b \| \leq 1 \} = \| a + \lambda e \|_{op} \). Therefore \(\| \|_{op} \leq \| \|_1 \leq 3 \| \|_{op} \).

By (ii), \(\| \| \) and \(\| \|_1 \) are equivalent uniform norms, and so \(\| \| = \| \|_1 \).
A NON-UNITAL ALGEBRA HAS UUNP IFF ITS …

(2) $c(A)$ has an identity e:

Let $(c(A_e), \| \cdot \|)$ be the completion of $(A_e, \| \cdot \|)$. Since $\| \cdot \| = \| \cdot \|$ on A, $c(A)$ can be identified to the closure of A in $(c(A_e), \| \cdot \|)$ so that $\| \cdot \|$ on $c(A)$. Let $a + \lambda e \in A_e \subset c(A)$,

$$
\|a + \lambda e\| = \|a + \lambda e\|_0 \text{ by (ii)}
$$

$$
= \sup\{\|a + \lambda e\|_0 : b \in A, \|b\| \leq 1\}
$$

$$
= \sup\{\|a + \lambda e\|_0^- : b \in c(A), \|b\|^- \leq 1\}
$$

$$
= \|a + \lambda e\|^- \text{ since } c(A) \text{ is unital}
$$

Thus $\|a\| = \|a + \lambda e\|$. Conversely, let $\| \cdot \|$ and $\| \cdot \|$ be two uniform norms on A, then $\| \cdot \|_0$ and $\| \cdot \|_0$ are uniform norms on A_e, hence $\| \cdot \|_0 = \| \cdot \|_0$ since A_e has UUNP. Therefore $\| \cdot \| = \| \cdot \|_0 = \| \cdot \|_0 = \| \cdot \|$ on A since $\| \cdot \|$ and $\| \cdot \|$ are regular.

References

