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Abstract 

We examine a model of BPS black holes lying on a discrete extra space. 

The geometry is obtained from the discretization of the harmonic 

equation. We study the scattering amplitudes of two types of scalar 

fields, which correspond to fields in a bulk and on a brane. We 

conclude that the two types of scattering can be distinguished in the 

region of large transfer momentum. 

1. Introduction 

Extension of gravity theory is regarded as an important subject to study in 
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modern theoretical physics. Some extended models are expected to be relevant to the 

alternative of dark contents in the universe [1, 2]. Also in a microscopic perspective, 

modification of the Einstein gravity is motivated in the community of theoretical 

physicists; the theory with good quantum behavior and some natural explanation to 

the hierarchical scales in particle physics are eagerly pursued by many authors. 

Now-a-days, the study of the models of gravity in higher dimensions, with and 

without higher-derivative terms in the action, has been a common topic in theoretical 

high-energy physics. Moreover, a broad range of possibilities is investigated, such as, 

scalar-tensor theory of gravity, vector-tensor theory, DBI-type, Lorentz-symmetry-

breaking, non-local, and so on. 

Massive gravity
1
 is an interesting model for the modified gravity, because a 

massive graviton is a natural generalization in particle physics in popular sense but 

massive gravity turns out to have many difficulties as a quantum field theory. It is 

known that the construction of ghost-free massive gravity [5, 6] is naturally derived 

from bigravity, which has been studied for several decades [7, 8]. Interestingly, the 

generalization of bigravity may permit multigravity [9], and it is closely related with 

deconstruction of gravity. The dimensional deconstruction [10, 11] is an idea of 

making a higher-dimensional theory from the lower-dimensional copious fields. 

Thus, the dimensional deconstruction can be regarded as a modified and restricted 

version of the discretization of space, which assumes the minimal scale in the length 

scale. The idea of the smallest length in our universe has been considered for a long 

time as a solution of removing divergences in quantum field theory. So we have seen 

here, the various theories of gravity are mutually related. 

It is essential to study the consequence of the generalized gravity theory with 

discreteness or other modifications at strong gravity, because it is known that the 

weak gravitational field limit is well-described by Einstein’s general relativity. 

Therefore the solutions of the gravity theories which represent for gravitating 

localized objects are important theoretical arenas to investigate the feature of 

gravitation. Especially, the interaction with matter fields at strong gravity can be 

thoroughly studied if the exact solution of the space-time geometry is obtained. 

In the present work, we will examine a simple model of a BPS black hole with a 

                                                           

1
For reviews, see [3, 4].  
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discrete space. In general, the object possessing the BPS relation in its mass and 

charges is governed by simple equation of motion, and is usually motivated by string 

theory and theories with supersymmetries. The BPS equation considered here is the 

Laplace equation, thus, the discretization of the differential equation can be done 

rather in a straightforward way. In this paper, we introduce the graph Laplacian to 

perform the discretization. Therefore, the extension to the general structures of 

discrete spaces associated with generic graphs will be possible, though only the 

simplest case is treated in the present paper. 

The plan of the present paper is as follows. In Section 2, we first review BPS 

black hole solutions
2
 in the Einstein-Maxwell-dilaton theory. Subsequently, we 

introduce the graph Laplacian to discretize the BPS equation and show its solution in 

the simplest case. In Section 3, we study the scattering amplitudes of scalar fields 

with the BPS black hole with a discretized extra space. We treat them in the Born 

approximation in the present paper. We consider two types of scalar fields, one is 

obtained from the discretization of the continuum theory, another is the field living in 

one site of the discrete space. We concentrate ourselves on finding the way how we 

can ‘see’ the black hole by different kinds of scalar fields. Section 5 is devoted to 

summary and outlook. 

2. BPS Black Holes and Discretization 

In this section, we review the simplest system allowing a BPS solution, the 

Einstein-Maxwell-dilaton theory. The action for the model in D-dimensional 

(continuous) spacetime is given by [12, 13, 14] 

 ( ) ( ) ,
2

4

16
2242





 −φ∇

−
−

π

−
= −αφ−∫ Fe

D
R

g
xdS DD  (1) 

where R denotes the scalar curvature, φ  stands for the dilaton field, and the field 

strength is defined as µννµµν ∂−∂= AAF  with an abelian gauge field .µA  

In this action, α  is the dilaton coupling. The effective massless field theory of 

string theory can be obtained if one set as .1=α  Then, the appropriate scaling of the 

metric yields the following ‘stringy’ action: 

                                                           
2
Strictly speaking, the solution obtained in the BPS limit has the singularity in the Einstein frame, 

except for the Reissner-Nordström solution ( ).0=α   
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µν
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−

µν = geg D  Now, we turn to use the original metric (1) in the following 

discussion. 

The static BPS solution can be derived, with the following ansätze: 
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( ) ( ) ,
22 3224 α+−α−αφ− = DD Ve  (4) 

( )
( ) ,1

32

2 1

2
dtV

D

D
dxA

−µ
µ −

α+−

−
=  (5) 

as the solution of the Laplace equation for ( ):ixV  

 ,0
2 =∂ V  (6) 

where the Laplacian is 

 ( ).1...,,1,2 −=∂∂≡∂ Dii
i  (7) 

Here we ‘discretize’ the equation (6) by replacing a part of the Laplacian with a 

certain graph Laplacian. We adopt 

 ( ),
1

22 Ga

d

i

i
i ∆−∂∂→∂ ∑

=

−  (8) 

where a is a scale of length. The graph Laplacian ( )G∆  has been introduced in 

spectral graph theory [15-18]. 

 

Figure 1. A cycle graph, .6C  
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A graph consists of vertices (or sites) and edges which link two vertices. For 

example, a cycle graph NC  has N vertices and N edges connecting vertices circularly 

(Figure 1). A matrix is defined according to the manner of connections of edges to 

vertices, and is called a graph Laplacian. For example, the graph Laplacian of 6C  is 

written as 

 ( ) .

210001

121000

012100
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000121

100012

6

























−−

−−

−−

−−

−−

−−

=∆ C  (9) 

The equation characterizing the eigensystem of the matrix is 

 ( ) ( ) ( ) ( ) ,ℓℓℓ vvG λ=∆  (10) 

where ( )ℓλ  is an eigenvalue of ( )G∆  and ( )ℓv  is an eigenvector belonging to the 

eigenvalue. 

For ,NCG =  one can find that the eigenvalues 

 ( )

N

ℓℓ π
=λ 2sin4  (11) 

and the eigenvectors 
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 −
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 (12) 

where .1...,,1,0 −= Nℓ  Note that the normalization of inner products can be fixed 

as 

 ( ) ( ) .*
ℓℓ

ℓℓ
′

′
δ=⋅vv  (13) 

Now we turn to the (partial) discretization of the Laplace equation. We restrict 

ourselves on the case with the cycle graph ,NC  hereafter. Note that the similar 
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discussion for general graphs is possible. The function V should be interpreted as the 

functions associated with vertices of a graph. By using the eigenvectors, we can 

expand 

 ( ) ( )
,

1

0
∑

−

=

=

N

kk vVV

ℓ

ℓℓ  (14) 

where N is the number of eigenvectors, k stands for the k-th vertex and ( )ℓV  is the 

function of ....,,1, dixi =  Assuming a ‘localized’ source, at the zero-th vertex, the 

equation should read 

 ( ) ( ) .4 0

1

2
k

id
k

d

i

N
i

i xNVCa δδπµ−=













∆−∂∂∑

=

−
 (15) 

We find the solution for :3=d  
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which seems to be a sum of the Newtonian potential and the Yukawa-type potentials. 

Taking the limit of a large number of vertices, such that ∞→N  and a small 

discretized scale 0→a  while NaL ≡  is constant, with introducing a continuous 

parameter ( ),0 Lykay <≤≡  we obtain 
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This expression has appeared when we considered the BPS black holes in the 

Kaluza-Klein compactification on 1S  with the circumference L [19]. 

Incidentally, the solution (16) can be expressed by the infinite sum as 

k
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Every part in the parentheses has the limit 

 { }
( )

,
1

22

,

yLqr

LrLNaN

−+π
 →

=∞→
⋯  (19) 

which is the Green’s function in four-dimensional space with mirror sources. Thus 

every part in the parentheses corresponds to the Green’s function in three-

dimensional space and one-dimensional infinite lattice. 

3. Scattering Amplitudes of Scalar Waves 

Scattering by black holes has been studied in the literature, such as [20]. In this 

section, we treat the scattering only in the simple way, since the model we consider 

here is still a toy model. We consider scattering of scalar wave in four dimensional 

space-time, i.e., .3=d  Suppose that the wave equation is assumed as 

 ( ) ,0

3

1

2 =ψ−ψ+ψ∂∂∑
=

rUp

i

ii  (20) 

where ( )rU  is an effective potential for scattering and p stands for the momentum of 

the incident wave. 

It is well known [21] that the Born approximation leads to the form of the 

following scattering amplitude ( ),θf  where θ  denotes the scattering angle, 

 ( ) ( )∫
∞

−=θ
0

sin
1

drqrrrU
q

f  (21) 

with the transfer momentum 

 
2

sin2
θ

= pq  (22) 

and p is the wave number of the incident wave. The scattering cross-section is simply 
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given by 

 ( ) .
2θ=

Ω

σ
f

d

d
 (23) 

We will consider two types of scalar fields and how the black hole described by the 

solution (16) can be seen by the waves in the Born approximation. 

3.1. Massless scalar field in the ‘bulk’ 

We first consider the scalar field originally defined in D-dimensional space-time 

and define its discretized version, which corresponds to the scalar plane wave 

spreading in the bulk space. Thus, we shortly call this type of scalar field as the 

‘bulk’ scalar. 

The wave function of the massless scalar in continuum D-dimensional space-

time is written as 

 ( ) .0
1

=ψ∂−∂
−

ν
µν

µ gg
g

 (24) 

If the background geometry with the solution (16) is substituted and monochromatic 

wave tie ω−∝ψ  is presumed, the wave equation takes the form 

 ( ) ( ) .023222 2

=ψω+ψ∂ α+−− DDV  (25) 

Note that for the massless field, .p=ω  For we consider a scalar field in the bulk 

now, we adopt the lowest eigenstate as the 1+d -dimensional massless scalar. We 

assume, that is, 

 ( ) ( ) ( ) .0, 00 ≈ψ∆ψ→ψ G  (26) 

Therefore the wave equation becomes 

 
( ) ( ) ( ) ( )

.0

1

023220
2

∑
=

α+−−
=ψω+ψ∂∂

d

i
k

DD
kkii V  (27) 

To use the Born approximation for ,3=d  we should use the trace of the matrix 

element of state vector from 0=k  to .1−= Nk  Thus, the scattering amplitude is 

given by 
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One can find a special case. If we consider the case with the dilaton coupling ,1=α  

then we find 
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2
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and this is independent of the dimensionality D. Substituting the solution of kV  for 

NC  obtained in the previous section, we get 
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and this leads to the following scattering amplitude: 
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µ
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aq

qq
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 (32) 

The amplitude as the function of the transfer momentum in this case is shown in 

Figure 2 for 6=N  and Figure 3 for .30=N  

Here we define normalized quantities 
( )

23
2 ωµ

≡
qf

F  and .222 qQ µ≡  In each 

figure, curves for several different values of am µ≡  are indicated. The line 

indicated as ‘NP’ represents for the amplitude by the pure Newton potential for a 

reference case. Note the variables defined here will be used throughout the present 

paper. 

Since the constant ,µ  indicates the size of the ‘black hole’, the next leading 

contribution to the Newtonian potential can be detected at large Q. When the scale of 
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discreteness (or the minimal length) a is sufficiently small compared with ,µ  the 

dependence on N becomes small. 

The limit of large N and small a should yield the case with a compactified space 

1S  in the continuum theory, in this case with .NC  The amplitude for a fixed ( )Naµ  

is shown in Figure 4 for ( ) 1=µ Na  and Figure 5 for ( ) .10=µ Na  In each figure, 

curves for 30,6,3=N  are plotted. 

 

Figure 2. The scattering amplitude of the ‘bulk’ scalar for .6=N  From top to the 

bottom on the right-hand side of the curves correspond to ∞= ,500,50,5m  and the 

case with pure Newton potential, respectively. 

 

Figure 3. The scattering amplitude of the ‘bulk’ scalar for .30=N  From top to the 

bottom on the right-hand side of the curves correspond to ∞= ,500,50,5m  and the 

case with pure Newton potential, respectively. 

We can find that if the scale of the ‘extra dimension’ Na  is small compared with 

the black hole scale ,µ  the discreteness of the space is difficult to be detected. 
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3.2. Massless scalar field confined on the ‘brane’ 

Next we consider the scalar field living in the single vertex at which the source 

of the BPS black hole located. This is a mimicker of the field confined on a brane. 

Thus, we may abbreviatedly call this type of scalar field as the ‘brane’ scalar. The 

corresponding brane is identified with 0=k  vertex. The wave equation for the 

scalar field 0Ψ  at the zeroth vertex is 

 ( ) ,0
1

0 =Ψ∂−∂
−

b
ab

a qq
q

 (33) 

 

Figure 4. The scattering amplitude of the ‘bulk’ scalar for ( ) .1=µ Na  From top to 

the bottom on the right-hand side of the curves correspond to 3,6,30=N  and the 

case with pure Newton potential, respectively. 

 

Figure 5. The scattering amplitude of the ‘bulk’ scalar for ( ) .10=µ Na  From top to 

the bottom on the right-hand side of the curves correspond to 3,6,30=N  and the 

case with pure Newton potential, respectively. 
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where ( )dbaqab ...,,1,0, =  denotes the 1+d -dimensional metric defined through 
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Assuming tie ω−∝Ψ0  again, we get the following wave equation: 
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Further we rewrite the equation by using the new variable 
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Although this equation depends on the number of spatial dimensions d as well as the 

total dimensionality D, the last term can be neglected compared with the second term 

if we consider sufficiently high-energy scattering. 

For 3=d  and ,1=α  the wave equation reads at high energy as 

 ∑
=

≈ψω+ψ∂∂
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Therefore the effective potential is given by 

 ( ) ( ).12
0

2 −ω−= VrU  (40) 
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By the Born approximation, we obtain the following scattering amplitude: 

( )
[( ) ( ) ]
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NN

aqqaaqqaqaqa

aqqaaqqaNa
f

−+−+++

−++++
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 (41) 

The amplitude in this case is shown in Figure 6 for 6=N  and in Figure 7 for 

.30=N  For the ‘brane’ scalar, the dependence on am µ=  is large for large N. 

The amplitude for fixed ( )Naµ  is shown in Figure 8 for ( ) 1=µ Na  and in 

Figure 9 for ( ) .10=µ Na  Even if the scale of compactification ( )Naµ  is large, the 

dependence on N is not so small. 

Since the ‘bulk’ scalar couples only to the Newtonian potential at the leading 

order, the dependence on N is rather small. This is because ( ) rV µ∝0  and the 

incident wave ( ).0ψ∝ψ  

On the other hand, the ‘brane’ scalar couples to every mode, thus the amplitude 

is sensitive to all the ratios of variables. 

4. Summary and Outlook 

To summarize: We consider the discretization of the BPS equation and obtain a 

solution in a simple case, which has a continuum limit of 1S  compactification. The 

solution in the present paper has three length scales: the radius of the black hole ,µ≈  

the discretization scale a, and the scale of the ‘extra dimension’ .Na  

The scattering of scalar fields has been studied. The dependence on the ratio of 

the variables differs by the type of scalar fields, the ‘bulk’ scalar and the ‘brane’ 

scalar. The ‘bulk’ scalar of the Kaluza-Klein zero mode couples to r1  potential at 

the lowest order in ,µ  the dependence of amplitude on N is rather small. On the other 

hand, the ‘brane’ scalar couples to all the components of the potential from the black 

hole, therefore the amplitude has large dependence on N. 
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Figure 6. The amplitude of the ‘brane’ scalar for .6=N  From top to the bottom on 

the right-hand side of the curves correspond to ∞= ,500,50,5m  and the case with 

pure Newton potential, respectively. 

 

Figure 7. The amplitude of the ‘brane’ scalar for .30=N  From top to the bottom on 

the right-hand side of the curves correspond to ∞= ,500,50,5m  and the case with 

pure Newton potential, respectively. 

The further study and straightforward extensions of the present work are 

expected as follows. The higher-order in the approximation or numerical derivation 

of the scattering amplitude should be checked. The solution describing multi-black 

holes can also be obtained and the scattering by the multi-black holes can be 

calculated. The use of other graphs than NC  is of importance, such as a path graph 

,NP  which imitates 2
1~ ZS  in the continuum limit. The graph with vertex weights 

is analogous to a warped space and is worth examining. The discretization using 

disconnected graphs seems to be a possible non-trivial extension. 

We also notify that the scattering by the stringy BPS black hole, in the case with 
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,1=α  is independent of the spatial dimensionality. This is important, if we consider 

generalization of the model using the complex graphs. The graph structure has, in 

general, no continuum limit in a naive sense as the case considered in the present 

paper ( ).1SCN →  As the field theory on fractal graphs have been studied [22, 23], 

the gravity on fractal graphs is an exciting subject to study. The fractal has a unusual 

dimension, or in some cases, no uniquely-defined dimension. The stringy case or 

special choice of the coupling is substantial in the study of theory with the fractal 

(graph). 

 

Figure 8. The amplitude of the ‘brane’ scalar for ( ) .1=µ Na  From top to the 

bottom on the right-hand side of the curves correspond to 3,6,30=N  and the case 

with pure Newton potential, respectively. 

 

Figure 9. The amplitude of the ‘brane’ scalar for ( ) .10=µ Na  From top to the 

bottom on the right-hand side of the curves correspond to 3,6,30=N  and the case 

with pure Newton potential, respectively. 

The present approach is based on the discretization of the equation of motion, 
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thus the action of the complete theory has not been considered yet. In other words, 

the discretization in our approach is only valid for the case with a special BPS 

relation among mass and charges. Although the investigation into the general case is 

important, the BPS case may be a special point in the ‘running’ couplings and to 

study the deviation from the point may be effective at some energy scale. 

Finally, we notify that a discrete object with a certain symmetry is interesting 

from a mathematical point of view, and the model of magnetic monopole has been 

considered recently [24]. Anyway, investigation on the possible substructure of our 

space-time should be continued with various approaches. 
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